AD-A154 769 THE DOCUMENTATION ASSISTANT: AN INTELLIGENT SYSTEM FOR /1.
DOCUMENTATION. . (U)> RDVANCED INFORHRTION HND ECISIDN ’
SYSTEMS MOUNTAIN VIEW CA J S

UNCLASSIFIED AI/DS-TR-1847-820-1 N8BO14-83- C 0444

Ry

- talVea

N

AR

YEONA

ARSI

IO,

-

-~y

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A

a

Al.DS

ADVANCED INFORMATION
& DECISION SYSTEMS

201 San Antonio Circle, Suite 286
Mountain View, CA 94040
(415) 941-3912

TR-1047-020-1

N
o

THE DOCUMENTATION ASSISTANT:

Jeffrey S. Dean
Brian P. McCune
Susan G. Rosenbaum

™~

<

Ty

2 An Intelligent System for Documentation
a

April 22, 1985
Final Report for 1 July 1984 - 12 December 1984
Approved for public release; distribution unlimited
Prepared for:
Office of Naval Research
Department of the Navy

800 North Quincy Street
Arlington, Virginia 22217

ONC FILE TOPY

The views, opinions, and/or findings contained in this report are those of the
author(s) and should not be construed as an official Department of the Navy
position, policy, or decision, unless so designated by other official documentation.

r UNLLASSLFIED

L1 LA

§ 0~ SECURITY CLASSIFICATION OF TS PAGE K
Do REPORT DOCUMENTATION PAGE -
:, -:: te. REPORT SECURITY CLASSIFICATION 1o, HESTHICTIVL MARKINGS ::'..
N Unclassified -
> 2s. SECURITY CLASSIFICATION AUTHOAITY J. OISTRIBUNION/AVAILABILITY OF kLAY .
l l Approved for public release; t..
R 20. OECLASSIFICATION/OOWNGRADING SCHEDULE distribution unlimited s
N . /-i gﬁ~’ - \..:
: [4. PERFONMING ORGANIZATION REPORT NUMAE R(S} S MOFILOINNG DNGANIZATION REPORT tULABL RIS) .},‘.
> TR-1047-020-~1 N
_i - 6a. NAME OF PERFOHRMING ORGANIZATION 0. OFFICE SYMBOL 7. NAPAT 6 AMCGNITORING ORGANIZATION :‘;1
S Advanced Information & “Hl spolicable) Office of Naval Research w2
S Decision Systems b
S 6c. ADORESS (Cily. Stute and ZII* Code) i ADDIEIE (Cudy. <tate aned 281 Cosedr's o
CR 201 San Antonio Circle, Suite 286 Department of the Navy ;ﬁ:.
" Mountain View, CA 94040-1270 800 N. Quincy Street -
I Arlington, Virginia 22217 B ok
> Se. NAME OF FUNDING/SPONSORING 8n. OFFICE SYMBOL 9. I‘ROCUIEMEN' INSTRAUMENT IDENTIFICA TION NUMBER .E-:
,:: CRGANIZATION i1t applicabiei N00014_8 3-C-0‘0’44 -_‘.,‘-
8c. ADDRESS (City. Stute end ZIF Code) 10 SOUHC | “JE UL DING NOS. t:j:’
PROG A PROJECT Tacw WORAK UNIT -
ELENEN! MO NO NO NO. p -
| o
- | A
The ' %%ﬁﬁé“&%‘fi%‘ﬁ‘x‘s'g‘ig?%:: An Intelligent ‘ o
tion _ R
12. PERSONAL AUTHOR(S) ‘.
Dean, Jeffrey S.; McCune, Brian P.; Rosenbaum, Susan G.
1Ja. TYPE OF REPORT 1Ib. TIME COVERED 14 DAYE OF REPOA «Vr, Mo, ey A5 PAGE COUNT J .
Final FROM 84/07!21 T0 _8_9/12101 85/04/22 l }':
16. SUPPLEMENTARY NOTATION ’F:
s
;«.
17. COSATI CODES 18 SUGJE&Y 55 RPMS 1Conunur uarnl. Foe 0t Mate s sk -ndtlfnnlysb-, M.a. number) >
tende ogram Mode ocymentation_Standar :
";“’ °“°2”" suB. GA. BrEeneatat of: BoFedets ng neering. Programming Environmend,
9 0 Intelligent Program Editor, Artificial Intelligence, NG
Documentation SEructure %
19. ABSTRACY (Cuntinue on reverse if necessury and ideatirs by dlueh nimbery .':'
\The purpose of this document is to describe a semi-automated system for the documentation of N
zomputer software; this system is called the Documentation Assistant (DA). To motivate
*his system, a general discussion of documentation issues and problems is interwoven with >
s - descriptions of how the DA would address many of these topics. A feasibility assessment and e
- ::: ;plan for this approach is presented. s
:".j .- The Documentation Assistant project is a research effort at Advanced Information & Decision :::.
e Systems. The purpose of this effort is to study advanced techniques which address one of the} ..
i; L [most pressing problems during the software life cycle: the process of documentation. ¥
Currently, the DA exists on paper only; one goal of the research effort is to develop a o
prototype version, which would be incorporated in the Intelligent Program Editor (another AR
research_prototype being developed at AI&DS under ONR sponsorship). i
&’J{/MQL / . . /T. . P ' - // * ’_.___—_/ '-1-
Sl g, / W/EZM e g ‘o
Spurde L i b g g Ol wB g n, (2
20 OISTAIBUTION/AVAILARILITY OF ABSTRACT o U [/ a5 iy casincane, £
JHCLASSIFIEO/UNULIMITED . SAME as ArT, K onic usenrs [Unclassified ',:
| N —— RS
226 NAME OF RESPON'IDLE INDIVIDUAL 20 1R e e 220 e R ':-“
D . Bo I I TN TP ot et
r. Robert Grafton (202) 696-4713 Code 430 :__.\
00 FORM 1473, 83 APR EOITION OF 1 JAN 7315 OISO) 1y UNCLASSIFIED ’
GEOLUET ¢ 01 0 e g L TS BA

..... . - . . e m e e o a at e at atatat et S S T S R L IR
O R R Ry Ny T B L L A T T A G T O A R A A A Sy A Al RN

PR B, S "I A il S o Sttt 8 e it g P iy Rl 10 Nt R b A iy < g, * 30 BE N b M MR A, Mia N > e el e B e AL 2 AUy TR VK

g CONTENTS
TABLE OF CONTENTS
I
- Page
- 1. OVERVIEW 1
2 1.1 PURPOSE OF THIS DOCUMENT 1
1.2 PROBLEM 1
- 1.3 APPROACH 1
- 1.4 FEATURES 3
1.5 SCENARIOS 3
1.6 GUIDE TO READING 5
2. THE DOCUMENTATION PROCESS 6
- 2.1 THE NATURE OF DOCUMENTATION 6
" 2.1.1 Name 7
2.1.2 Structure 7
o 2.1.3 Attributes 8
S 2.1.4 The Documentation Taxonomy 9
- 2.1.5 Classifying Documentation 10
2.2 THE REPRESENTATION OF DOCUMENTATION 11
. 2.2.1 The Extended Program Model (EPM) 13
2.3 THE CONTEXT MODEL 14
2.3.1 Understanding What the Programmer is Doing 14
2.3.2 Tracking the Documentation and Code 16
2.4 DOCUMENTATION POLICIES 16
- 3. CONTROLLING DOCUMENTATION 18
3.1 POLITICAL ASPECTS OF DOCUMENTATION CONTROL IR R
3.2 TECHNICAL ASPECTS OF DOCUMENTATION CONTROL 20 T
3.2.1 The State of the Documentation and Code 20 R
3.2.2 The State of the Programmer 21 N
3.2.3 A Rule Base for Controlling Documentation 21 [Sha
4. THE USER INTERFACE 23 o
. 4.1 VIEWS A - o
- 4.2 INTERACTION CONTROL povo / 725 =
E 4.3 TRAVERSAL T 7 %
4.4 RETRIEVAL SR : T v 27 X
~ 4.5 FORMATTING g 4o T
~, T ' e o =
5. FEASIBILITY by .. 1 o8 L
y Dimtpibulinn e 3 '::’.“.;?"
[5.1 IMPLEMENTATION FEASI.LITY |, " /00 ol g
T e . S
< ! 'ij st |I S5 i ! ;~':~:
Ho
- RN |
T T N A N R S >

I X B LY "o

i

CONTENTS

5.1.1 The Intelligent Program Editor

5.1.2 Documentation Database

5.1.3 Detection of Outdated Documentation

5.1.4 Documentation Retrieval

5.1.5 Documentation Formatting and Analysis
5.2 DEPLOYMENT FEASIBILITY °

5.2.1 Current Documentation Problems

5.2.2 Documentation Life Cycle Support

5.2.3 Supporting Documentation Standards

5.2.4 Knowledge Acquisition and Maintenance
5.3 FEASIBILITY SUMMARY

6. WORK PLAN

6.1 TASK SUMMARY
6.2 TASK DESCRIPTIONS

7. FUTURE RESEARCH

7.1 FUTURE RESEARCH ON PROGRAMMING ENVIRONMENTS
7.2 FUTURE RESEARCH ON DOCUMENTATION

8. CONCLUSION
9. REFERENCES
APPENDIX A: THE INTELLIGENT PROGRAM EDITOR

APPENDIX B: RUBRIC: A SYSTEM FOR RULE-BASED
INFORMATION RETRIEVAL

R 1)
[} I" l’ I. (' " ‘)l’ l“.b
LA A A P AN
N IR

A PR DA

L0

e
»

‘ »
l- .~. -
N

a
4, o, -
o

R

Y, SR L, S B W M/ Tl 22 20 S N R e N A Ry o L et T R e

FIGURES

LIST OF FIGURES

: The Structure of a View

: The Module Info View

: The Algorithm Info View

: Documentation Life Cycle Support

: Overview of SDS Documentation

: The SDS Standard (Top Level)

: Data Item Descriptions (Partial List)

: Software Test Plan DID

: Attributes of the Software Test Plan DID

: Example of Formal Test Requirements

: Representation of the SDS Documentation Hierarchy
: An Architecture For Advanced Programming Environments

s o - o 9 N
B N N AT NI G i I a o N~ A e SN~ - it o A i v B8 i T W

Overview Section 1

1. OVERVIEW

1.1 PURPOSE OF THIS DOCUMENT

The purpose of this document is to describe a semi-automated system for
the documentation of computer software; this system is called the Documentation
Assistant (DA). To motivate this system, a general discussion of documentation
issues and problems is interwoven with descriptions of how the DA would address
many of these topics. A feasibility assessment and plan for this approach is
presented.

The Documentation Assistant project is a research effort at Advanced Infor-
mation & Decision Systems. The purpose of this effort is to study advanced tech-
niques which address one of the most pressing problems during the software life
cycle: the process of documentation. Currently, the DA exists on paper ouly; one
goal of the research effort is to develop a prototype version, which would be
incorporated in the Intelligent Program Editor (another research prototype being
developed at Al&DS under ONR sponsorship).

1.2 PROBLEM

The software development and maintenance processes currently consume
extraordinary quantities of resources. A great deal of this cost can be attributed
to the loss of information and knowledge during the software life cycle [Dean-83|.
As people work on software, they learn a great deal about it; much of this infor-
mation is forgotten (as they move on to new things) or lost (as they change jobs).

The purpose of documentation is to provide a means for capturing informa-
tion. Unfortunately, current documentation practices fall far short of being able
to stem the loss of information, since documentation is treated as a separate (and
often less important) activity. The result of this is that documentation is inade-
quate: it is often incomplete, out of date, and inaccurate.

Improving the documentation process can make a considerable impact on
the software development and maintenance process. Clearly, the process of writ-
ing documentation is expensive — it is not amenable to full automation, and
doing it correctly is more work than doing it incorrectly. However, over the long
term (and especially in the maintenance phase), the cost of good documentation
will pay for itself many times over.

1.3 APPROACH

The Documentation Assistant addresses issues relevant at all stages of the
documentation process, from requirements analysis in the beginning to mainte-
nance in the end. However, as a starting point, the research uescribed in this

-1-

]
P YRx
R

a
¢ P

[
3

K

‘e
o'

“'""‘q
.’
Ly

el e

v .-

LS

R
RN

* _-'--5 g P - .1.
LS

TR

IO oSl Yo SL 30 Nadohi b (0, pliherity Dol 2 KBt il St il el el Wiy Ol ully Al A S i i B 0t iy iy - Rup - gl AN Jon vn DI SR iy M

o
+ '
i
"fn ’n‘

Overview Section 1 RN
AN
LT
AL
RN

document focuses primarily on that documentation which is written and main- “and

tained by programmers (i.e., in-line program comments and related documenta-
tion). This focus should not be construed to imply that these ideas are useful
only to programmers. The capabilities provided by the Documentation Assistant
will benefit all those who work with documentation.

The Documentation Assistant presents a unique approach that will alter the
way people deal with documentation. It will provide:

e Integration: The DA will be part of the programming environment; it can
be used just like other programming tools in the environment. There is
no need to switch contexts in order to work with documentation.

o Assistance: The DA will help the programmer perform documentation
tasks by providing both tools and structure. It will not automate docu-
mentation -- people are an essential part of the documentation process.

o Intelligence: To ensure that large quantities of documentation are kept up e
to date and consistent requires considerable knowledge about the docu-) |
mentation process; to do this without overburdening or interfering with e
the user requires an equal amount of knowledge about users and how .
they will use the system.

)]

Not only does the DA provide new ways of working with documentation, it also
provides different ways of representing documentation. Documentation will he:

e On-line: The computer is the home for all documentation. While a hard-
copy form of documentation can be produced, the primary/original form
is always on the computer.

e Structured: Rather than being viewed simply as text, documentation is
recognized to have structure, and this structure is used to help guide the
documentation process.

e Traceable: The dependencies between different documents (or different
parts of a single document) will be represented by the DA.

e Controlled: The creation and modification of documentation will be
governed by the DA, allowing the system to keep track of the documenta-
tion, and ensure that documentation is handled correctly.

NN
The DA represents a paradigm shift in the way documentation is used, by treat- RS
ing documentation with the same care and formality which has been applied in PN
the past only to code. By providing new tools for handling documentation and R
new techniques for representing documentation, the DA has the potential to Ao
significantly improve the production and maintenance of documentation. ‘-
.;,:.‘(:.

9 AR

- - » ‘-‘I

h::‘{v

l"'.-?.I

* *, I'I ve
] b_

el o

5] P

KA A S ..
Y ‘-i’- g&i‘\.‘.’,-,"- R

Lo e T M e P BRI AP N Mt it i S S i A S A Bk~ Y hiCR

a3

‘ ..

Overview Section 1

~ N

1.4 FEATURES

i 3
4

The DA will provide the following features: i
)
et

: : : : : o

o Inlegrated programming environment: Documentation support is provided s

A,

as part of the programming environment.

e Structured editor: Documentation is created and modified with an editor
knowledgeable about the structure of documentation.

e Documentation tied to programs: Programs are explicitly linked to related
documentation.

e Navigation atds: Interactive tools are provided for browsing, traversing,
and searching documentation.

e Document formatting: Documents can be formatted using standard text
formatting facilities.

e Detection of outdated documentation: Missing or outdated documentation
is automatically detected.

e Policy support model: documentaTion policies, standards, and guidelines
are explicitly represented in a parameterized model.

e User preference model: The user interface is based on parameterized
information about user preferences.

1.5 SCENARIOS

To provide a better idea of how the DA might appear in use, this section
presents a scenario of such a system in operation. The scenario is based on a
programmer working in a maintenance environment, who is responsible for the
maintenance of both code and documentation of a subsystem. The version of the
DA described is imbedded in the program editor which the programmer normally
uses.

Two caveats are in order. First, this scenario is hypothetical; there is
currently no system that does any of this. Second, the interaction between a user
and the system would, in practice, be primarily graphical; the DA will make use
of graphics for both input and output. Unfortunately, there is no good way to
show this here, and so the interaction between the user and the DA is presented
in narrative form.

A N e A S o P S e L

T A AR ST dE R A N s el e e |

Overview Section 1

Referencing documentation:

The user is examining a program, trying to understand it in order to fiz a prob-
lem. He brings the program up on the screen and sees a call Lo a procedure with
which he ts unfamiliar, so he uses the mouse to indicate that he is interested in
that funclion. A pop-up menu of available documentation for that function ap-
pears. The user again uses the mouse lo select the entry on the meny that
corresponds to documentation on how the function works. A new window contain-
ing the requested information appears on the screen.

Tracing through documentation:

The documentation makes reference to another procedure which he doesn’t know,
and so the user follows a similar procedure, selecting the function (though this
time the function reference appears inside documentation, and not inside code)
and then selecting the documentation entry from the pop-up menu, giving him a
display of documentation describing how this new procedure works.

Restoring context:

When he 1s finished reading this documentation, the user asks the system to pop
back to where he was, the documentation for the second procedure disappears
from the screen, and the documentation for the first procedure reappears. The
user asks to pop back again, and the documentation again disappears, leaving him
in the code where he originally started.

Creating documentation and code:

The user feels that he has an adequate understanding of the problem now, and so
proceeds to start fixing things. He first adds some new lines of code to the part of
the program that appears incorrect, but quickly realizes that he needs to define a
new procedure (o perform a calculation. He moves to an appropriate place in the
code und starts the definition of the new procedure. Since he is writing a new
procedure, the system displays a standard procedure header form on the screen fer
him to fill out as he writes the function. While he is working, he alternates
between writing code and writing documentation.

Explanation by example:

There ts one part of the documentation form that he does not understund, and so
he selects that part with the mouse; when a pop-up menu appears, he selects the
entry for sample documentation. The part of the documentation he was unsure of
ts now filled 1n with a sample of what this type of documentation should look like.
This sample makes it clear to him how this field should look, and he then finishes
that part of the documentation.

-
ML AN

Overview Section 1

Reminder to finish documentation:

After finishing the new procedure, the user tries to pop back to the original pro-
gram he was firzing. However, he has left out some important parts of the pro-
cedure header documentation, and so the system asks him if he uishes to write the
documentation now. He does some of the required documentation, but then de-
cides lo leave the rest for later, and he tells the system he does not want o update
the rest of the documentation right now.

Reminders to add new and update old documentation:

Now that he has written the new procedure, he ts ready to finish the fix to the first
function. He makes the appropriale code changes, and then tries to save the
changes. The system prompts him for new documentation describing the changes
he has made l(notc how he was prompted for the changes after he was finished,
rather than after he made the first few changes). The system then prompts him
with old documentation that might need to be updated. He realizes that some of
this old documentation does indeed need changing, and so he updates this docu-
mentation.

Reminders to finish documentation:

After completing this documentation, the system then asks him to finish the docu-
mentation for the new procedure that he left incomplete. Since he would like to
test the program before completing the documentation on that code, he declines to
finish the documentation now, knowing that he will be reminded in the future that
the documentation needs updating. He saves his work and exits the system.

1.8 GUIDE TO READING

Sections 2 through 4 represent a design plan for the DA; Section 2 describes
the process and structure {and hence representation) of documentation; Section 3
addresses the issues of controlling documentation; and Section 4 presents user
interface techniques. The feasibility of the DA approach is covered in Section 5.
A plan for implementing the DA is presented in Section 6. Possible directions for
future research are briefly discussed in Section 7. Section 8 is the conclusion, and
references for this report are in Section 9. Appendix A is a reprint of a paper on
a related effort, the Intelligent Program Editor. Appendix B is a reprint from
another related effort, the RUBRIC information retrieval system.

-H-

ARSI bR AN A i et e e

The Documentation Process Section 2

2. THE DOCUMENTATION PROCESS

The Documentation Assistant is designed to provide intelligent assistance in
all phases of documentation production and maintenance. We use the term
“software documentation™ to refer to all written picces of information pertinent
to a software system throughout its life cycle, including (but not limited 10)
requirements, specifications, design, design rationale, source code, in-line com-
ments, test plans, test data, test results, modification history, problem reports,
user manuals, operations manuals, and maintenance manuals.

A necessary part of any system purporting Lo provide intelligent behavior is
a model of the process/environment in which the system functions. We break
the process of documentation into three components:

e structure of documentation, i.e., the form of the documentation itself
e contezt/state model, which tracks significant events in environment
e policy model, which represents constraints on documentation such as stan-

dards, guidelines, and preferences

The following sections discuss these components in more detail.

2.1 THE NATURE OF DOCUMENTATION

The prerequisite for understanding the documentation process is to undar-
stand documentation itself. However, there are many views and opinions o
what documentation is. The view taken by the DA treats documentation in
terms of the following three components:

e name: Each piece of documentation has a name that can be used to refer-
ence it.

e struclure; Pieces of documentation can be interconnected to forin a struc-
ture.

e attributes: Each piece of documentation may have certain properties or
additional information associated with it

The following sections cover these components in more detail, discussing
representation techniques that will be used in the DA. The views taken here are
partially motivated by research in the areas of semantic networks and object-
oriented programming.

- e ot ——— e m
0 - T -
AR R N A e M L SR it s Sttt S s s

AP S RN P WS TR TN Tt

The Documentation Process Section 2

2.1.1 Name

Every piece of documentation has a name associated with it. The name of
a document has the same usefulness and functionality as the name of a person: it
can be used to refer to that document or person. When objects are to be dealt
with as individuals, names arc an obvious characteristic {objects which are denlt
with as aggregates, on the other hand, do not need to be individually named:
they can be named descriptively or procedurally). Names do not have to be
meaningful, though in certain domain such as programming. it is desirable for the
names to have some meaningful interpretation.

As with people, namcs may not necessarily be unique. When this happens,
additional information is needed to provide disambiguation. For example, “John
Smith who lives on Short Street’” can be used to specify a person; “the Require-
ments Specification Document for Accounting Package' can be used to specify a
document. Note that both of these specifications might be ambigucus in a global
setting (e.g., “‘Short Street in which city?”, “Accounting Package for which com-
pany?”), but it is necessary to specify only enough information for disambigua-
tion with respect to some local context.

Names can refer to classes of documentation as well as instances. For
example, “the user manual for the Emacs editor on TOPS20™ is an instance of
documentation; ‘“‘the user manuals for editors” is a class of documentation
describing a set of documents. From a representational viewpoint, classes and
instances are treated identically.

2.1.2 Structure

Structure is the way in which pieces of documentation are woven together.
It is important for those whe read documentation as well as for those whe write
it; it is also a logical model for the representation of documentation used inter-
nally by documentation systems. Knowledge of document structure can assist in
many parts of the documentation process, including:

e creation: Structure can guide the creation process by making sure that
documentation is assembled properly. .

e searching: Instead of scanning the entire document, structural knowledge
allows searching to be limited to the relevant (sub)section.

e understanding documentation: The connection of high level abstractions
to lower level details provides traceability that makes it easier to under-
stand documentation.

It is natural for different kinds of documentation to be structured in a
variety of ways; possible structures include sequential/linear (one dimensional),
hierarchies/trees (two dimensional), and graphs/networks (n-dimensional). For

-7-

Controlling Documentation Section 3

scenario (*if it looks like it has changed, then it has™), this estimate can be car-
ried along to the next step of the process.

3.2.2 The State of the Programmer

The preferences of the user are related to the context model, thus allowing
the DA to make decisions based on user preference with respect to a given state.
For example, a user might specify that he wants to update procedure level docu-
mentation whenever he edits and then leaves the procedure; another user might
want to do the updating only at the end of the edit session; and another user
might not want to do updates until the code has been tested and is known to be
working.

Thus, via the preference mechanism, users can control when they will be
prompted for documentation creation/update. Since the DA will be capable of
interrupting the user to ask for documentation, this type of control is important
to prevent the system from getting in the way of the user. The quantity of
interruptions is also moderated by the mechanisms that allow unimportant
changes to be ignored or put aside.

3.2.3 A Rule Base for Controlling Documentation

The process of asking the user to update documentation is rule-based. The
rules are hased on various criteria mentioned earlier, such as importance of docu-
mentation, likelihood of semantic change, preference of user, state of user, etc.
The set. of rules is not fixed; it can be tailored to specific environments.

The rest of this section is an example of how a rule-base might be used.
Rathcr than presenting specific rules, however, we present rule spccifications,
which describe a class of rules. These specifications are in the form of functional
mappings; they map the space of the left side (the Cartesian product of the
independent variables) to the right hand side {the dependent variable).

Suppose it is necessary to determine when to notify a user about a particu-
lar documentation object (attached to some segment of code) being out of date.
To answer this question, start with rule (1), whose right hand side can answer
this question. To evaluate this rule, it is necessary to evaluate all the dependent
variables on the left hand side. That is, to determine when to notify the user
about out of date documentation, there are three things to look for: the probabil-
ity that the documentation is really out of date, the importance of the documen-
tation for that particular part of the program, and the user’s preferences.

probability (’f (importance ’ wser [when to
(1) { documentation; X \ of link

oul of date

| preference| \ nolify user

-21-

I I - -
- - - - - . - - . . - e e ‘ :

[‘.. - o n . L) L % v Vet et T, -~ . - = . *.
RS IS RIS P AR A A . PRI RS T

Controlling Documentation Section 3

administratively and technically, it is difficult for people to become conversant
with (and able to apply) all appropriate policies. By providing tools that help
apply policies, it becomes more likely that policies will be followed. Second, poli-
cies are sometimes neglected because they are difficult or cumbersome to practice.
For example, policies requiring documentation to be kept up to date with the
latest code require programmers to continually keep track of change and of the
documentation affected by those changes. Documentation tools can help alleviate
this problem by providing support for the more mundane documentation chores
and thus reduce the effort required to do things correctly.

3.2 TECHNICAL ASPECTS OF DOCUMENTATION CONTROL

The process of keeping documentation updated is controlled by several fac-
tors: the state of the documentation and code, the state of the programmer, and
a rule-base for controlling documentation.

3.2.1 The State of the Documentation and Code

The DA will keep track of the state of the documentation. By virtue of the
Extended Program Model on which the IPE and DA will be built, it is possible to
maintain a better idea of what is happening to code and documentation than has
previously been possible. As a program is changed, the IPE w1|l have the capa-
bility to determine if the meaning of the program has changed.' This is possible
because of the multiple program representations provided by the EPM. For
example, if a program were textually reformatted but unchanged, it is easy to
determine that the program semantics are unaffected, since there is no change in
the syntactic structure; if a statement were inserted into the middle of a cliche. it
might be determined that the cliche didn’t change by examining the flow
representation and realizing that the graph of the cliche was disjoint from the
graph of the new statement.

At the coarsest level, the EPM will be able to determine if an object has
really changed. Detected program changes can be propagated back to documen-
tation (following the links that connect the documentation to the EPM described
earlier). At the next level, it is possible to draw associations between certain
semantic changes and documcntation objects. For example, there is an obvious
connection to the syntactic object parameter_list and the documentation object
parameters. If a procedure changes, but the parameter list does not, then there is
no need to change the parameters documentation, even though other documenta-
tion linked to that procedure might need to be changed.

The idea of program change is not a boolean decision. There may be times
when a likelihood of semantic change (and propagation to documentation) can be
assessed on a probabilistic scale. lnstead of always assuming the worst-case

1 Actially it will make a probabitistic hy pothesis aboat ehanges in semantios, sinee it is inpos-

sthle to detect arbitrary semantic changes,

Controlling Documentation Section 3

suggestion). There will always be events that fall on the vital end of the scale;
there is simply no way of avoiding certain things, and when it comes to the issue
of vital policies, preference must give way. On the other hand, to gain accep-
tance, it is crucial to avoid annoying the user and continually overruling his
preferences. Luckily, there are many events that do not fall at the exireme end
of the scale, and in these cases, there are several techniques for working out
compromises.

e schedule negotiation: If policy requires certain documentation, but doesn’t
say when it is required, it would be possible to make a compromise with
a programmer whose preference was not to do the documentation. The
compromise is basically this: the documentation does not have to be done
now, but it has to be done at some definite time in the future ée.g., before
the software is released). In this case, longer term policy needs are over-
ridden by shorter term preferences. By warning the programmer that
there is a policy requirement that must be met, there may be time to
allow this information to sink into the programmer’s mind; knowing
about this future requirement, the programmer might even rearrange
things (e.g., do some planning) so that the documentation will be easier
to do.

e balancing policy against preference: If there is some flexibility in policy, it
is possible to weigh policy against preference. A user can associate a
degree of importance to preferences; this can be modified as the user
desires. As choices/compromises are made by the system, the user can
adjust preferences to achieve desired results.

e following policy to the letter: There may be some flexibility in policy that
will allow adjudicating in favor of preference over policy. For example, if
policy required a document, but certain parts of that document were not.
as important, it would be possible to avoid those sections if the user were
so inclined.

At first glance, these compromises may be viewed as a method for allowing a pro-
grammer to avoid responsibility. However, these techniques serve an important
role in making the DA a system that people will want to use. We believe that
providing a means for balancing policy and preference will help achieve accep-
tance and will not be abused.

Thus, we believe that programmers are generally willing to follow
policy;' however, they often need help in applying policy consistently and intelli-
gently. This philosophy is based on two observations from our studies of
software maintenance environments. First, policies are often neglected because of
ignorance. Given the complexity of programming environments, both

1 This ix a necessary assamption for any policy-based tools; if programmers must be forced to
adhere to policy, then there is a much Larger problem that tools alone cannot solve.

-19-

ST A TS T T e TR TN e

Controlling Documentation Section 3

~ o

At

3. CONTROLLING DOCUMENTATION

The discussion so far has focused primarily on documentation itself and
how the DA handles it. We now turn to how the DA will “handle’” the user.
This section focuses primarily on the issues of maintaining documentation in a
“proper” state; the next section looks at the user interface issues.

s v
[y
]

-
L

3.1 POLITICAL ASPECTS OF DOCUMENTATION CONTROL

To keep documentation in a proper state, it is first necessary to define just
what the proper state is. The idea of a proper state is relative to each documen-
tation taxonomy; what is good practice in one environment may be forbidden in
another. Of the three components that constitute the documentation process, it
is the policy portion that really determines what is good and what is bad. Policy
says what things should be, what things might be, and what things should not
be. By definition, if policy is followed, then things will be in a proper state.

Keeping documentation in a proper state is only half the picture; the other
half is helping the user. A documentation system should not be the master that
controls the people who use it. Just the opposite: the users should control the
documentation system. The only way to do documentation correctly is to have
the support and help of the users. A documentation system cannot possibly work
correctly if people refuse to use it or thwart its activities. Thus, there is a deli-
cate balance that must be achieved: on one hand, there are policies that, within
certain limitations, specify how things are to be done; on the other hand, people
have their own ideas about how to dc things.

The balance can be achieved by providing a policy-driven mechanism that
takes great care in trying to accommodate individual preferences. There is often
more compatibility between policy and preference than might be evident at first
glance. Compatibility may be in the form of non-interference, where policy and
preference do not conflict; it may be in the form of compromise, where there are
mutually satisfiable alternatives; or it may be in the form of goal revision, where
the original plan is modified. The DA will try to traverse this tightrope, simply
because it is the most reasonable path; it is unrealistic to expect to change either
policy or preference to suit the needs of a documentation system.

Achieving this goal is not an easy problem. The DA will not contain built-
in mechanisms that will automatically solve the tension between policy and
preference. Rather, it will provide a framework; in any particular environment,
the ability of the system to achieve a proper balance rests in the hands of the
individuals who create the documentation taxonomy.

The key idea behind achieving this goal is to balance the policy require-
ments, which are generally longer term, against the user preferences, which tend
to be shorter term. When dealing with policy, the DA can choose where on a
spectrum of importance any particular issue falls. The spectrum ranges from
vital (the policy must be followed) to inconsequential (as in the case of a

-18-

The Documentation Process Section 2

Since it is rare for programmers to work under the constraints of a single
set of policies, it is expected that there will be a great deal of interconnectivity
between different levels of policy in the policy model. In most organizations,
there is an apparent hierarchical structuring of policies. For example, there may
be a set of documentation standards for the entire Department of Defense. The
Navy may have documentation standards which augment the DoD standards. A
command in the Navy may in turn have its own standards; a programming
organization under that command may have its standards. Finally, a program-
mer may have his own preferences for things not specified by any of the stan-
dards. In this hierarchy of standards, lower level standards generally refine the
higher level standards, not replace them. However, this need not always be true;
organizations may have permission to override standards at a higher level.

Looking at content alone, there is a great deal of similarity between pro-
cedures, standards, guidelines, and preferences. They all specify a way of doing
things; it is primarily in importance or necessity that they differ. Thus, the DA
can represent policies in a uniform way, in terms of constraints that apply to the
documentation process. However, the importance of the constraints is
represented separately. For example, suppose there is a constraint specifying
that module level documentation include a revision history. If this is specified by
a standard, then the constraint is vital; if this is specified as a guideline, then the
constraint is recommended; if it is specified as a preference, then the constraint is
weak. '

-17-

M = B A ’
R Y Yy . = - .. : - . Fas Tk P 2t . - . PPN S tirfhd] S s

The Documentation Process Section 2

what the programmer is doing.

2.3.2 Tracking the Documentation and Code

The next step in tracking the programming process is to keep tabs on the
status of the documentation and the code. There are a number of states a
software system may be in, including: preliminary design, design, development,
debugging, unit testing, system testing, beta testing, and released. Knowing the
state of a system as a whole does not mean that all the components of the system
are in the same state; each component, subsystem, etc., must also be tracked.
Tracking the documentation may be a somewhat easier job than tracking the
programmer; since states do not change all that often, it is not unreasonable for
the programmer to tell the system the state of documentation and code.

However, the system is capable of tracking documentation or code that has
changed. This information is used to provide a more accurate assessment of the
state of documentation and code; it is stored in the documentation database (and
is not lost between sessions). For example, if the system is in the ‘‘released”
state, and the code is modified, it should be infer ed that the state of the system
has changed.

2.4 DOCUMENTATION POLICIES

Thus far, we have talked about two dimensions of the documentation pro-
cess: the nature and structure of documentation, and the tracking of program-
mers and documentation. The final dimension necessary for the DA concerns the
choice of what and how documentation is created and updated.

The decisions as to what documentation should be written, how it should
be written, how it should be updated, etc., are not determined just by the pro-
grammer. There are usually administrative procedures that specify what docu-
mentation is required, standards/guidelines specifying/suggesting how to write
documentation; and only if there are decisions that are unspecified is the pro-
grammer allowed to follow his own preferences. These procedures, standards,
and guidelines are collectively referred to here as documentation policies.

The DA will maintain models of these policies, which it will use to guide the
process of creating and updating documentation. Policies will be represented in a
structured fashion; connections between policies will be explicitly noted. Thus, it
can easily be determined if part of one policy refers to or overrides (or conflicts)
part of another.

The explicit representation of policy is meant to provide for easy accommo-
dation of different policies. While different organizations may have similar (or
overlapping) policies, it is rare for separate gro'ps to have identical sets of poli-
cics. The policy model factors out this inforination, ensuring that knowledge
about policy is not hardwired into the DA. To make the DA support the policies P
of a different organization, it would only be necessary to modify the policy model,
rather than rewrite the DA itself.

2, 8%
)
S S

-16- S

.
‘,
[
K
o
A A

‘ y":v

T e et AT T T T T AT T AT T e et e T AT e e e e T e T e e e e e e
MR A AC AT A PO s -.t.a.;..' I LT Py I St) R el et e e (NS --‘.---‘_.

id.

The Documentation Process Section 2

In order to do this intelligently, it is first necessary for the DA to under-
stand what the programmer is doing. The cont 'xt which we {ocus on here is the
cditing context, where the programmer may be creating, modifying, or reading
programs. Since the DA will be tied to the Intelligent Program Editor, this
choice of context is logical. From a larger perspective, the context should cer-
tainly include programming activities outside the scope of the editor; it might
even include activities outside the scope of the computer system {e.g., ‘‘what time
does the programmer leave for the day?” or “when does the programmer go on
vacation?"').

There are two basic approaches for determining what the programmer is
doin, 1d where he is doing it):

e announcement: The programmer ‘‘announces’” to the system what he is
doing (i.e., the user does the work).

o inference: The system watches the individual actions the programmer
takes, and tries to piece them together into a plan to provide a larger
model of what the programmer is doing (i.e., the system does the work).

The first approach is cumbersome, but nonetheless useful because there are cer-
tain times when the only way to figure out what is happening is by asking the
user. The second approach requires a good deal of intelligence on the part of the
system. To achieve this level of understanding, it is first necessary to build a
library of plans that describe common sequences of actions. Then, techniques for
sorting through a large number of plans in search of the plausible one(s) are
necessary. Finally, it is necessary to determine which plans really fit what the
user is doing. Based on current technology, this approach may be rather expen-
sjve.

However, there is another alternative that is essentially a combination of
the two. Suppose that an editor had certain functions that, when used by the
programmer, would give insights as to what was currently happening. That is,
these functions would be designed so that when they are invoked, the editor
would be able to guess fairly easily and reliably what the programmer was doing.
For example, in the Emacs editor, there is a command for compiling code without
leaving the editor; use of this command is an indication that the programmer
thinks that the code is complete (at least, complete enough to run). As another
example, imagine an editor that has a special command for editing procedures;
when the command is invoked with a procedure as an argument, only that pro-
cedure is displayed on the screen, and editing continues on that procedure until
the programmer gives a command to edit another procedure. This command
wonld allow the editor to infer what function the programmer was editing.

Thus, by providing commands that work on semantic units, instead of tex-
tual units, an editor may be able to infer a great deal about what the program-
mer is doing. By virtue of the Extended Program Modcl provided by the IPE,
the IPE is in a good position to provide extended commands that are based on
the syntactic or semantic structure of programs, thus providing better clues as to

-15-

LS

el e N v - S =::..=.“‘.0T.'4_,‘ Y

f
1

The Documentation Process Section 2

a single monolithic database), an incremental approach to EPM development can
be taken. Databases and tools for their manipulation can be developed and then
integrated into the EPM. Separate databases for the EPM also mean that each
representation can be stored in the most appropriate type of database. For
example, the database representation for text (i.e., a linear program representa-
tion) will be quite different than the representation for a syntax tree (i.e., a two
dimensional representation).

Thus, the architecture of the EPM provides a natural way of adding addi-
tional representations. In the case of documentation, a new database supporting
documentation structure and operations would be added. The documentation
database will provide three basic components: documentation objects (represent-
ing the documentation itself), attributes (representing properties of documenta-
tion), and relationships (representing the connections that tie documentation
objects together).

2.3 THE CONTEXT MODEL

The next step in building an intelligent documentation tool is to build tools
for understanding the process of documentation. In order to manipulate docu-
mentation properly, it is necessary to understand what the user is currently doing
and the current state of the documentation. The focus here is narrowed to the
process of documentation from a programmer’s point of view; hence, the
emphasis will be primarily on in-line documentation. However, these ideas are
not restricted to in-line documentation; given that documentation is on-line,
these ideas can be applied to all phases of the documentation process.

The Context Model is a part of the DA that deals with keeping track of all
that is happening in the programmer’s environment. This includes keeping track
of what the programmer is doing (e.g., writing code, debugging code, fixing docu-
mentation) and keeping track of the status of code and documentation. The
Context Model has two components, a passive component, in which all relevant

" information is stored, and an active component, that is responsible for collecting

and maintaining the information in the database. The Context Model is an
integral part of the DA, and is not directly visible to users; thus, most users
would not even be aware of its existence as a separate component.

2.3.1 Understanding What the Programmer is Doing

One of the key ideas behind the DA is to help the programmer write and
update documentation without being intrusive. If the system gets in the way of
the programmer, he will eventually turn it off or ignore it. On the other hand, in
order to ensure that documentation is kept up to date, it may be necessary for
the DA to intrude on the programmer. The DA will be an active partner in the
documentation process, and, unlike conventional tools, it will be capable of tak-
ing the initiative and asking the programmer to do something.

-14-

re v
’
Lttt

*
L)

onaire
A
PR
. o
el
. !
. e
.~
e
v .
[
[-..-1
-

-

M

Y
N e
0

N
-

s

FereTy

The Documentation Process Section 2

documentation that hide much of this detail.

The DA will be able to provide this documentation structuring because it
will build on the Intelligent Program Editor (IPE), which provides a rich environ-
ment for program manipulation. In particular, the Extended Program Model
part of the IPE will provide the mechanisms necessary for this cross linking.'

2.2.1 The Extended Program Model (EPM)

The Extended Program Model can be thought of as a database that main-
tains multiple representations of programs. Currently, there are plans for six
representations: text, syntax, flow, segmented parse, cliche, and intentional aggre-
gate {Shapiro-84]. The EPM will maintain consistency among these representa-
tions, and the IPE will allow any of these representations to be directly viewed
and manipulated. For example, if an IPE user were examining the syntactic
representation and made a change, the corresponding change would be made to
the text and other representations.

The representations in the EPM are linked together, allowing the IPE to
map between objects in different representations. By adding documentation to
the EPM as an additional representational level, the DA will be able to use the
EPM to connect documentation to program objects as well as to other documen-

tation.

Thus, by building on top of the EPM, the DA will be able to integrate
documentation with code. Moreover, the DA can make use of the various
representations in the EPM, enabling documentation to be linked to code at any
level, and not just the textual level. For example, the documentation for a pro-
cedure header might be linked to the syntactic unit corresponding to the entire
procedure, instead of (as in current practice) placing the documentation text just
above the procedure in its text form. This means that the binding between the
code and the documentation is increased; if, for example, the procedure were to
be removed, it would be clear that the documentation should also be eliminated.

The DA should also be able to make use of the version control facility
planned for the EPM. Since the documentation is so closely tied to the EP'M, it
is anticipated that the EPM’s version control mechanism will also be able to pro-
vide version control for docume itation. Because of the linkages between docu-
mentation and the EPM, the version control of documentation will be intimately
tied to the version control of the code itself. It will not be possible to lose syn-
chronization between the code and the documentation, as the separation between
code and documentation itself will be blurred.

While the EPM will provide a uniform view of different program representa-
tions, it is internally composed of a number of databases, linked together to pro-
vide required connectivity. By building upon separate databases (instead of using

1 The latelligent. Program Bditor (and its Extended Program Model) is heing developed under a
research contract sponsored by ONR.

-13-

,_,.
N
s,

ARSI T godi S Ar) Chaf R . ’ y . .
CRL GRS C W R P L P 0ok DA Pkl R Pl SR Pl St At ot A Anluind Svint-iutnl vt Il A “Sind Sty - 7. - Srlatoft te B L thie "t Saiin iy P/ Mo “Niad™) Mt Rty Sl iy R E SR "le A,) Cx -

AT

C &
o !.-.”,-'.
) The Documentation Process Section 2 oA
= i
-~ T
objects, and providing mechanisms for connecting and describing those objects, it N

. becomes fleasible to build tools for documentation manipulation. L]
The decomposition of documentation should be considered an internal S

¢ mechanism for the DA; the user does not see his documentation shredded into :g::::
N thousands of objects and thrown together into some incomprehensible structure. Vi

Documentation structure is retained using the relationships mechanism described
- earlier. One can think of a process where documentation is divided up into
objects, each object is labelled, and then connections between the objects are
drawn.

The next step towards elevating the treatment of documentation is the
= storing of all documentation objects in a database, separately from all else. The
database provides two functions: it provides a convenient method for storing
large quantities of documentation objects, and it provides a means for regulating
RN the modification of documentation. The means of this regulation is simple: since
' documentation is no longer treated as just a text file, there is no way of directly
going into the database to edit the text of a document. The reason for this is to
E preserve and control the structure of the documentation. If documentation is

decomposed into component objects, it does not make sense to allow unrestricted

editing of documentation, since this might destroy the structure. Instead, the DA
- will allow editing of documentation objects in a controlled context, so that struc-
ture is preserved. Moreover, this level of control allows the status of documenta-
tion to be tracked; when documentation is updated, it is easy to determine which
. part of the documentation was modified.

In addition to the structure inherent in the documentation itself, the DA
provides a way of directly linking documentation to the program code. This is

R very different from the traditional practice of in-line comments. In-line com-
ments have no formal standing with respect to most programming tools, which
generally discard comments during parsing; even when comments are preserved,
[] there is no formal way of associating comnments with a given piece of code. This
< is a task that is very easy for a human user but intractable for a computer. If a
user sees a comment next to or on top of a piece of code, the user can geuerally o
make the assumption that this comment refers to the adjacent code. Unfor- ;-_',{«'_3
tunately, this is an assumption that a computer, unlike a human user, has no .

way of verifying. Imagine that a comment refers to code which is then changed
(or even worse, deleted). What happens to the comment? By providing a formal
linkage between code and documentation, the impact on documentation of chang-

x ing or deleting code can be assessed.
i With the same mechanism, documentation that is not normally considered R
& in-line, such as specification and design documents, can be linked directly to
code. This provides the ability to look at a piece of code and then trace back to
the design or specification; similarly, one can look at the specification and trace v

through to the code which implements part of that specification.

The result of decomposing documentation into objects and linking them e

f_, directly to the EPM results in a plethora of objects and links, possibly to the
point of unmanageability for the human user. However, this structure is meant

only for the DA; the user interface provides higher level access mechanisms to e

. NS

= * -12- e

SR

' N

o
[N

X4

o S

AT
RS

The Documentation Process Section 2

desired result. For example, to determine the importance of a particular
item of documentation, the DA might look to see if there is an impor-
tance attribute associated with that item; if not, then the DA might try
to see if there is some general rule about the importance for all documen-
tation of that type; and if that fails, the DA might try to find similar
documentation objects and see what their importance is. It is possible
that the inferencing mechanism will fail entirely to come up with the
answer;' in this case, the DA could either make a worst case assumption,
or could try another approach.

e automated analysis: Some attributes might be determined by an analytic
routine specifically designed for this purpose. For example, if readability
were a document attribute that was needed for some purpose, and a
document did not have that attribute, then a readability metric might be
applied to the document to determine the appropriate value for the attri-
bute.

e human analysis: The human user can be called upon to do the job if
necessary. This should be a last resort, since the user should not have to
bother with details that the computer could figure out.

2.2 THE REPRESENTATION OF DOCUMENTATION

One of the primary differences between the DA and current documentation
tools is that the DA treats documentation as a first class citizen. This means
that documentation is not considered unstructured text, simply appearing in
manuals or in-line, adjacent to program code. Documentation has both proper-
ties and structure; one should be able to point to a piece of documentation and
safy “What kind of documentation is that?” or “To what does this documentation
refer?”’.

The DA will use several techniques to elevate documentation to this level.
The above discussion on documentation structure loosely referred to ‘‘pieces’ of
documentation. Pieces of documentation are formally called documentation
objects. A documentation object has a name, attributes, and relationships with
other documentation objects as well as relationships with parts of the program
code.

The purpose of decomposing documentation into a set of objects is to pro-
vide a handle for the computer-assisted manipulation. While it may be easy for
people to look at documentation and intuit structure and meaning from it, this is
an intractable problem for the computer. By breaking the documentation into

1 Thiz might happen if the answer was not determinable from the knowledge base; it might afso
happen if the inferencing engine was not, using the necessary steategies to find the answer.

-11-

R
P

EINCAINE At U0 LI gl

The Documentation Process Section 2

At this point, there is an interesting observation that can be made about
the documentation taxonomy. In a certain sense, names, relationships, and attri-
butes are themselves a form of documentation. One can think of documentation
as describing some system, while names, relationships, and attributes are the next
level up, describing the documentation itself.

2.1.5 Classifying Documentation

The Documentation Taxonomy provides a mechanism for talking about
documentation, but in order to use this mechanism, it is necessary to classify
documentation with respect to the taxonomy. To classify documentation, it is
necessary to decompose the documentation into its component pieces, and then
determine the name of each piece and its relationship to other pieces. There are
basically three mechanisms the DA will employ for doing this:

e definilion-time analysis: When documentation is created using the DA, it
will be immediately classified; the decomposition, name, and structure is
implicit in the interface for most documentation (i.e., the documentation
is entered in a form that is easily decomposed). This makes classification
primarily a definition-time operation (as compared to a run-time opera-
tion), since the bulk of the work is done when the taxonomy is initially
defined.

e run-time analysis: If documentation is not created via the DA, it is much
more difficult to classify. It may be possible to provide automated tools
to segment and classify documentation items. Unfortunately, unless a
fairly strict set of documentation guidelines have been followed, this
method is both weak and prone to errors.

e human analysis: The alternative to automatic post-analysis is human
analysis. This is the most arduous technique of all, but it is more reliable
than run-time analysis.

Determining attributes calls for slightly different mechanisms because attri-
butes are used differently. Since the DA needs the decomposition, names, and
relationships of documentation Lo construct documentation networks, this infor-
mation is necessary just to get the documentation into the DA system. Attri-
butes, however, are not essential until the associated documentation is actually
manipulated. When it is necessary to determine attributes, there are several
techniques (analogous. but not identical, to the above techniques):

e automaled inference: Attributes can often be logically inferred using other
information in the DA. Inferencing means that by ascertaining a sct of
logical premises, one can make certain deductions. In the simplest ease,
inferencing is simply looking up the fact in the knowledge base. More
often, inferencing involves a chain of implications which lead to the

-10-

The Documentation Process Section 2

programming languages, the semantics of attributes such as type will not be built
into the interpretation mechanism; instead, there will be support for the declara-
tive specification of these properties.

The choice of attributes, and the values which attributes may take on, is
partially dependent on the environment. While there are some attributes, such
as type, which are always needed, there are other attributes that may not be
needed. Moreover, even required attributes vary in the values which they can
have; the possible values for the type attribute will vary across environments.

2.1.4 The Documentation Taxonomy

The notions of name, relationship, and attribute provide a means for talk-
ing about documentation in general. A Documentation Tazonomy is a set of
names, relationships, and attributes that can be used to talk about the particu-
lars of documentation.

The Documentation Taxonomy provides a basis for reasoning about docu-
mentation. The structure provided by the relationships and attributes allows the
recording of many kinds of information about documentation. However, this
information about documentation need not be complete. By applying inheritance
rules to documentation structure, it may be possible to infer facts about docu-
mentation objects without having that information explicitly represented. For
example, to determine how to format a documentation object, the first thing to
check is to see if there is an attribute for that object which talks about format-
ting specifications. If not, then the parent of the object might be checked to see
if it has any formatting specifications. If the parent doesn't have the attribute,
then the search continues up the hierarchy, until an ancestor with the appropri-
ate attribute is located.'

One of the more challenging aspects of building a system to manipulate
documentation is that there are so many ways of using documentation. Note
that in the previous discussion of documentation, there were no absolute state-
ments about documentation requirements; for any particular application and
environment, the particular names, relationships, and attributes will vary. While
there may be commonality between different environments, the design of the DA
recognizes this as an option rather than a given.

The goal of the documentation taxonomy is to provide a descriptive (rather
than prescriptive) framework, allowing the DA to be tailored to particular
environments. In many cases, taxonomies may be the same for different environ-
ments; certainly, parts of taxonomies will always be common to all environments.
The process of building up a taxonomy for a new environment might be compar-
able to the process of moving an expert system to a different task in the same
domain.

1 There are different techniques for determining the value of missing attributes; thus, there must
be rules to determine which attributes ean be inherited and which must be determined in some
other way (such as asking the user).

-9-

"oy W
L e

fr

XA A P
AR

‘. -'.‘r' .'if.'t
y NS

Fi

S
20 ". {
L2 ‘3 * o7 i

s
7.7
I I

FOrp
() :A' 4

¥, Ee¥
[}

]

l

(43

r
4

.
5 E)
LR]

The Documentation Process Section 2

example, hierarchical structures are common for textual kinds of documentation,
such as manuals. Unfortunately, most existing systems that provide document
structuring capabilities (such as word processors, mail programs, and documenta-
tion browsers) force documentation to fit into one particular type of structure.
Because it is based on a more general mechanism for creating different types of
structures, the DA will have considerably more flexibility.

In the DA, the idea of a relationship is used to capture structural informa-
tion. A relationship is a connection among n (usually two) pieces of documenta-
tion. Connections themselves have names, which indicate the type of relation-
ship. By providing connections with names, a diverse set of structures can be
supported. Examples of connection names are: contains (‘“‘a procedure header
contains the name of the procedure’), references (‘“the Program Description
Document references the Program Design Specification”), depends on (“‘the Com-
puter Program Test Report depends on the Computer Program Test
Specification”), etc.

For example, if a particular procedure header contains information on the
author of that procedure, then the relationship contains will hold between the
procedure header documentation and the author documentation. Relationships
can be among documentation classes as well as documentation instances, thus
providing a way of specifying that all objects of some class have a certain rela-
tionship with all objects of another class (i.e., inheritance). As another example,
if all procedure headers contain information pertaining to the date the procedure
was written, then the relationship contains will hold between the class
procedure_header and the class date_written.

2.1.3 Attributes

Attributes of documentation are descriptions or properties that pertain to
the documentation. An attribute refers to a particular piece of documentation.
There are many attributes that one might use to describe documentation, such as
purpose, readability, completeness, correctness, quality, or currency. Attributes
can be created and accessed by users as well as by documentation tools.

Attributes are easily represented as property-value pairs. For each picce of
documentation, there can be an arbitrary number of property-value pairs. If the
DA were posed a question of the form ‘“What is the status of this piece of docu-
mentation?”’, it would attempt to answer this by checking the value of the status
property. For example, if a program comment were added to clarify a bug fix,
there may be an attribute purpose which has the value ‘‘clarifies the bug fix"'; if a
program comment were written by a particular programmer, there may be an
attribute author which has as its value the name of the programmer.

There are certain attributes that are required for all documentation objects.
For example, the type attribute is appropriate for all objects, regardless of
environment. As in programming languages, the type attribute is a name which
has certain semantic associations that characterize the referenced object. Type is
an important vehicle for talking about documentation. It conveys information
and expectations to anyone who knows the definition of the type. But unlike

-8-

R

. W N S WY Y FEEEAY v -

“s Th h SR, TV 2 ¥ CUEEWA S T

Controlling Documentation Section 3

Rule (2) says that the likelihood that documentation is out of date can be
determined by the type of the documentation object, the type of the program
object, and the type of the change that was made to the program object. The
first two clauses can be determined by lookup; the other clause must be deter-
mined by the EPM.

probability of

type of . type of type of !
(2) | documentationg X |programi X |, hange documentation
object object out of date

There are two more clauses from rule (1) that need to be evaluated. The
importance of a link can be determined by evaluating rule (3), which says that
the importance of a link can be determined by looking at the type of documenta-
tion object and the type of program object. For example, if the program object.
is a procedure and the documentation object is a procedure header, then the
importance is ‘“high”.

type of type of tmportance
(3) { documentationg X | program; — of link }
objyect object

Finally, the user’s preference can be determined by evaluating rule (4),
which requires evaluation of the type of documentation and program obhject
(already evaluated by the above two rules) and the state of the context model.
which can be looked up.

type of type of state of user
(4) docume.ntatl-on X yprogramg X conlezt(— { prejerence}
object object model

This process of starting from a goal and recursively searching through a
rule-base in an attempt to find a way to reach the goal is known as goal-directed
inferencing or backward chaining. As values are determined for each clause, the
values are passed back up, until the goal is recached. Since the proposed evalua-
tion scheme for the system is based on a multi-valued logic, answers can be some-
where between ‘“‘yes’ and ‘“no”. Thus, reaching an answer may require the selec-
tion and application of cutoff levels.

-22-

.
ST l"-'}"."J

KEREFE A LI LA A LRI RS, I PLER PO e

LR AR

-)
“at el el alal

The User Interface Section 4

4. THE USER INTERFACE

Understanding and manipulating documentation is one half of the DA; the
user interface is the other half. The phrase “Documentation Assistant’ is used to
connote a partnership between the computer and the user. The human is an
essential part of the documentation process; the purpose of the DA is to help, not
replace, the user. To provide this help to the user, the DA must provide an inter-
face that is intelligent and user friendly.

The most important aspect of the interface provided by the DA is the
integration of the documentation into the programming environment; in particu-
lar, the DA will be built on the Intelligent Program Editor, and will allow natural
access to documentation through the editor. There should be no need for the
user to switch context in order to manipulate documentation.

The IPE will provide a window-oriented user interface. It will present a
display consisting of a series of windows, allowing for the user to know the state
of the system at all times through the visual representation on the screen. The
documentation and code under scrutiny can be displayed in a multiple number of
views. The user can move easily among the different views by moving between
(or creating new) windows.

Multiple modes of interaction will be provided by the IPE. User input can
occur through both menu item selection and keyboard input. Each of these
modes will be available simultaneously; the user can use whichever is more con-
venient. The system will be highly customizable, allowing the interface to be
modified to suit the preferences of individual users.

In addition to the IPE functions, made available by building the DA on top
of the IPE, the user interface will provide a number of documentation-specific
functions. The rest of this section will describe some of those functions.

4.1 VIEWS

Previous discussion on documentation representation described a way of
splitting documentation into small chunks or objects. This provides a natural
way for a computer system to manipulate documentation. However, it provides a
most inconvenient model for people, who may prefer to deal with documentation
in larger units. The view mechanism of the DA provides a user level mechanism
for handling documentation.

A view is like a template: it provides a frame [or displaying a set of docu-
mentation objects together (Figure 4.1).

Views are named entities. For example, to sce general information about a
module, a user might ask to see the Module Info view for that module (Figure
4.2). There may be many views for one particular object; a user might ask to sce
the Algorithm Info view for the same module (Figure 4.3).

-23-

.......

A

...........

The User Interface

view-name

link-name | [link-value

link-name | line-value

Figure 4-1: The Structure of a View

Module Info
Name sort
Author Joe Ada
Date August 1984
Revision | 2.1

Figure 4-2: The Module Info View

Section 4

Algorithm Info

Name sort

Keywords sort, bubble sort

Description | bubble sort algorithm using ...
Parameters | integer array to be sorted
Reference Knuth, vol. 3, page xxx

Figure 4-3: The Algorithm Info View

There is no one set of views that will be adequate for all environments,
since the specification of views is based on the taxonomy itself. Different libraries
of views will need to be provided for each environment; but, since views are pri-
marily meant to be a user interface tool, the DA will also permit the creation of
new views by individual users in order to suit their own needs.

-24-

r(’-l(.‘z"".l
S .
‘l.',‘ +
‘j‘;‘o‘-i y

%o |

_"e

A R
o .

.
s
" e

1" .,
' .
Lol

o ';'
1y o ",
Ed

(]
3
v

A
s

A
LT LA

,-:f.

e TR N TRTNTW YT
- .-, - - B - - - . rony
[RN L AL A R T AR AT AR LN S INER S AU e e T ot APURICI LI S A AR A RS M A i e e A Ben o S
er o

e
L Y
VoSN
L

The User Interface Section 4

VW T W —————

In the above examples, views were used to examine existing documentation.

u Views can also be used for creating or modifying documentation. To document a
module, a user might ask the DA to create a Module Info view for that module.

The system would display the template (with known values, such as date or
e author, automatically filled in); creation of the documentation then becomes the
- process of filling in the template. Such a technique provides a way of structuring

the documentation creation process. If the user wants to set up general module

information, the view makes it clear what should be included in that information.

LT It also provides a way of analyzing documentation: when filling in a template, the

T decomposition of the documentation into objects is obvious (since each slot in a
view is a separate object).

To go a step further, if the user needs some assistance in writing documen-
tation, it would be possible to display an example of how that documentation
might look. This sample could be a fake version, created specially for this pur-
pose, or it could be actual documentation for another part of the system. For
documentation that is standardized, this information should be readily available,
since standards generally give examples or descriptions of how documentation
should look.

4.2 INTERACTION CONTROL

It has been customary for the programmer to have control over the pro-
gramming environment; actions are initiated on request only. This mode of
interaction is known as user initiative. User initiative places the responsibility
for all actions on the user. In complex environments, there may be too many fac-
tors (such as programming standards, guidelines, administrative procedures,
module interconnectivity, etc.) for the programmer to deal with in any reasonable
fashion. The alternate approach is called system initiative, wherein actions are
initiated by the system without user intervention. System initiative is particu-
larly useful in complex environments because computers are good about keeping
track of large numbers of (sometimes seemingly unimportant) details. On the
other hand, system initiative is inadequate for total control because the system
doesn’t always know what the programmer should be doing. The idea of a mized
initiative approach is a good compromise, where some actions are user initiated
and some are system initiated.

The DA will provide a mixed initiative form of interaction. The user initia-
tive part is fairly obvious: the user can ask to create, modify, search, and view
documentation. The system initiative aspect is somewhat unique, and provides
the DA with a capability not generally found in programming environments.
Based on the model for determining when documentation needs to be
created/updated, and based on the context model of what the programmer is
doing and what state the system is in, the DA can take the initiative to ask the
programmer to update documentation at an ‘‘appropriate” time.

Having the DA prompt the user for documentation is a significant step. 1t
means that remembering to find and update (or create) appropriate documenta-
tion is no longer strictly the programmer’s responsibility. It means that the pro-
grammer does not have to switch contexts in order to update documentation. It

-25-

CIE AT AN PR AT S Tl AN SRS NP St S . 4
- e DI N T A AT L A P S P R S TR Dad SwBy/i Ml N o, Mty e S i S

The User Interface Section 4

XAr

7
Vel

means that the programmer does not even have to be concerned with using the
B correct tools for performing the update. The act of updating documentation is
N considered an integral part of the editing environment; moreover, keeping track

of the state of all the documentation becomes the responsibility of the system
2 and not the programmer.

2R
t

-
-

'l_
SR

4.3 TRAVERSAL

L

The term (raversal refers to moving through the documentation. There are
two basic modes of traversal: browsing and navigating. Browsing, or undirected

o traversal, is the process of going through the documentation without looking for

[anything in particular. For example, if you were given a program you had never
seen before and told to find the bug in the program, the first thing you might do

. would be to browse through the documentation just to see what it looks like.

Ve Browsing is characterized by wandering or undirected search; if you werc to look

- over a browser’s shoulder, it would be difficult to figure out what he was looking
for. Browsing is unstructured: the user neither needs nor wants restraints.

r o,

C On the other hand, navigating, or directed traversal, is a more goal-oriented
search. For example, if you were given a program you were familiar with and

Ve told to find a bug in the program, you might have a very good idea of where to

" start looking.

Navigating is a more structured process, and providing support to help

. structure and track the search space is natural. For example, there are two basic

strategies for navigating hierarchies: breadth-first and depth-first.' To provide

support for a user operating in either of these modes, a system can keep track of

where the user has been and which place should be visited next. Thus, when a

level is popped, the user will find himself where he left off, without keeping men-

tal or written notes. Since it is often the case that a person will use a cross

- between these two strategies, it is important to provide a mechanism that is flexi-
ble enough to provide both alternatives.

; There is also another technique that is useful during navigation and possi-
bly during browsing. This is the idea of guided trails. If you were maintaining a
program, and knew quite well how that program worked, you might want to

somehow encapsulate that information so that others could learn without rcpeat-
ing all your eflorts. Imagine that you were to explain a certain aspect ol the pro-
. gram to someone. You would start out in a certain place, point out relevant
things, move to another place, point out other things, etc. The path followed as
you move through the code is a guided trail; you have figured out what parts of

L“ the system are necessary to examine in order to understand the operation of some
aspect. If there is a way of saving this trail, then it could be “‘played back™ later
. (to others, or even to yourself, since you might have forgotten the trail). s
.r: 1 ln a study on program comprehension, we found that these strategies were an important
characteristic of the process of debugging programs [Domeshek-84].
3 -26- DR
N SO
.., - ..“\.
-.,_\..‘\
[_" SR
u‘, e

M e AT .t et s At e - L e e e e e e e e ..
R R R R Y ey e e e N e T AT A e e e T g T e e T e

The User Interface Section 4

4.4 RETRIEVAL

Documentation retrieval is similar in many ways to navigation: searching
through the documentation space for particular information. The difference is
that in navigation, each move may be charted on the basis of the previous move;
in retrieval, it is known how to get directly to the information.

The standard technique for retrieving documentation (or, for that matter,
most any kind of on-line information) is via information/database retrieval
languages. The IPE will provide a retrieval language called the Program Refer-
ence Language (PRL); while this language is aimed at retrieving programs, it
could also be used to retrieve other kinds of objects. The PRL may be well
suited to documentation retrieval because it is designed for retrieval of structured

objects.

Another technique for retrieving documentation from the IPE is fairly obvi-
ous: pointing. If an object is on the screen, retrieval can be done by pointing to
the object (with a cursor or a mouse) and asking for all the documentation associ-
ated with that object. Retrieval is done simply by traversing the links from the
program database to the documentation database.

4.5 FORMATTING

While the DA is primarily concerned with on-line documentation, it needs
to be capable of converting documentation into a hardcopy form. Conversion of
documents that have a ‘“book-like” form (e.g., manuals, specifications, plans) into
documents is fairly straightforward; it is only necessary to provide output that is
compatible with a text formatter. On the other hand, conversion of in-line com-
ments into hardcopy form requires much more work. Since there may not be any
explicit linear structuring in this documentation, the DA will provide a means for
selecting and composing these objects.

-27-

b
Feasibility Section 5 e
) 5. FEASIBILITY -
1 To assess the feasibility of the DA, we examine here two major issues: feasi- ::25::‘_
; bility of building the system (“implementation’) and feasibility of placing the T
system in use (‘“deployment”). S
L g-.
5.1 IMPLEMENTATION FEASIBILITY :'-;". -
: The DA will be rather eclectic: some sections of the DA represent new code
- that must be written specially for this application; some sections represcnt experi- .
mental code borrowed from other research efforts; and other sections may be !
commercially available software. These various pieces of software are discussed R
below. g
= 5.1.1 The Intelligent Program Editor b B
— Many of the ideas for the DA have come out of the IPE effort at AI&DS; in L'*-
: fact, the DA will actually be built upon/into the IPE system. With this D
- bootstrapping, much of the start-up effort that would have been renuired for the R
DA will not be necessary. The IPE will provide part of the database (the EPM) N
as well as a user interface. by
i

However, it should be noted that the IPE is a research effort. The IPE is

) still in the design phase, and it will be some time before any of the IPE system

- could be used to support the DA. Moreover, while one of the goals of the IPE

eflort is to produce a runnable prototype, there are no assurances that the IPE

effort will actually produce a system that provides a usable base; as a research t

[effort, the goals of the project are to demonstrate concept feasibility, not to e
deliver usable software.

The DA could be implemented without the Extended Program Model of the
IPE. However, the DA would then forfeit the ability to link code directly to
documentation (and hence the ability to automatically detect outdated documen-
tation). The DA would still have a structured documentation database (though
somewhat less sophisticated), tools for manipulating that database, a policy
model for controlling documentation, and a user preference model for conforming
to user desires.

The DA could also be implemented without the IPE user interface. How-
ever, unless additional effort were put into the development of a DA user inter-

face, much of the interactive, integrated, window-oriented nature planned for the RS
DA would be lost. The DA would still have much of its original functionality; it e
would just not be as easy to use. K
T
Thus, the best approach to building the DA would be to utilize as much of R

- the IPE as is available. Building on the IPE can only help the DA; its unavaila- »
bility would impact only the time necessary to build the DA. S
]
-28- NS
'.:::.:.;4

e e T L N W N N T e T ey
Bl A T S N e DA ARSI T T it o N it M I R A el I i S 3

Feasibility Section 5

5.1.2 Documentation Database

The documentation database for the DA will be developed in two steps.
The first step is to develop a stand-alone mode: a database for documentation
that provides support for just documentation and is not linked to the Extended
Program Model. The second step is to integrate this database into the EPM, so
that documentation and programs can be linked together.

Developing a stand-alone documentation database is definitely feasible.

The best approach would be to develop a special purpose database in order to

. address intricacies specific to documentation. As a backup approach, an existing
database system could be used, and necessary database routines could be added.

Integrating the documentation database into the EPM is more of an

unknown. Since the EPM is still under design, determining the ease of adding a

. new component is difficult. However, the EPM is being designed with the inten-

' tion of being able to add documentation. Thus, it is likely that adding the docu-

- mentation database to the EPM will be significantly less work than the develop-
ment of the EPM itself.

5.1.3 Detection of Qutdated Documentation

l One of the most unique features of the DA is its ability to automatically
determine when documentation is out of date. There is a great deal of variability
possible in the eflectiveness of this task. To better describe this process, it is use-
ful to borrow a few terms from the field of information retrieval. In the context
of the DA, the term recall refers to the percentage of outdated documents that
were detected; the term precision refers to the percentage of detected documents

: that were actually outdated documents.

The goal of the DA (and of any retrieval system) is to achieve maximum
recall and maximum precision. Unfortunately, it is often the case that strategies
for trying to increase one measure results in decreasing the other. Therefore, any
strategy aimed at increasing one measure needs to be carefully monitored to
determine the effect on the other.

The simplest strategy for detecting outdated documentation is to flag docu-
mentation as outdated if anything it references is changed. This is likely to
: result in high recall but very low precision; along with the documentation that
. actually needs changing, the system will flood the user with documentation that
' is not outdated. Based on current technology, this is about the best that can be
done. The DA should be able to surpass this, achieving a similar degree of recall
but with a significantly higher degree of precision.

The most prudent approach to increasing precision appears to be the incre- '.::E',jw
mental addition of knowledge about the documentation taxonomy (provided by]
the DA itself) and knowledge about the program semantics (provided through the v

EPM). The utilization of this knowledge makes it possible to eliminate more

-29-

Feasibility Section 5

picces of documentation from the list of possibly outdated documentation. The
purpose of incremental addition of knowledge is to add knowledge in small
chunks, making it easier to determine the kinds of knowledge have a negative
side effect (in terms of precision and recall).

By using these techniques, it is quite likely that the DA can achieve its goal
of higher recall and precision. Just what levels can be achieved is an open ques-
tion, as is the question of what levels users will find acceptable.

5.1.4 Documentation Retrieval

The documentation retrieval facilities discussed earlier should be relatively
easy to build. In the case that users find themselves in need of a more general
purpose retrieval capability (e.g., unformatted text retrieval), it may be possible
to make use of an existing information retrieval system. Commercially available
information retrieval systems provide basic capabilities for locating documenta-
tion. Better yet, Al&DS has already developed a prototype of an intelligent
information retrieval system that provides retrieval capabilities beyond that of
any commercially available system [McCune-83|. Incorporating one of these
retrieval systems should be a straightforward eflort.

5.1.5 Documentation Formatting and Analysis

The DA effort will not require the development of any new documentation
formatting tools; rather, it will rely on existing document/text formatters. The
only difficult part of document formatting is linearizing the database/network of
documentation, coercing it into a form acceptable by the text formatter. Given
that the documentation database (and the tools for manipulating it) are avail-
able, there should be little difficulty in achieving this. Similarly, existing tools for
checking spelling, grammar, diction, readability, etc. could easily be added to the
system.

5.2 DEPLOYMENT FEASIBILITY

Assuming that the DA can be successfully built, the next question is the
feasibility of moving such a system out of the research environment and into a
production environment. The following subsections provide some insight into
these issues.

5.2.1 Current Documentation Problems

The need for a tool like the DA is great, especially in government/military
programming environments. Current documentation practices in these environ-
ments suffer from many problems. A number of these problems were identified in
an earlier study of software maintenance [Dean-83|, which found that documenta-
tion takes a back seat to software, for a variety of reasons:

-30-

Feasibility Section §

1. Documentation is not considered an important part of the end product:

e only a portion of the total documentation is specified as a
deliverable

e the requirements for deliverable documentation are much less
rigid than the corresponding requirements for the software

e documentation is often not done until after the programming

2. Documentation is not considered an important part of the software life
cycle:

e documentation is allov ed to lag behind the software
e programmers dislike writing documentation
e documentation writers have inadequate training

e writers are presented with little structure and inadequate guide-
lines

3. Documentation is poorly handled:
e tools for manipulating documentation are inadequate
e documentation is sometimes done off-line

e it is difficult to evaluate the completeness or correctness of docu-
mentation

The DA provides a basis for helping reduce these problems. The first problem
would be partially alleviated if contractors used the DA during the program
development process, since their documentation task would be eased, and their
coding environment would be integrated with their documentation environment.
The second problem is also partially addressed by the DA; while no tool can
make someone write documentation, a good tool can encourage and assist the
process. The DA certainly forces the recognition that documentation is a critical
part of the software life cycle. The last problem is directly addressed by the
capabilities of the DA.

5.2.2 Documentation Life Cycle Support

The DA, as described in this document, represents only one viewpoint of a
documentation system (that of the programmer). For any documentation system
to be truly usable, it must provide facilities for all those involved in the produc-
tion and maintenance of documentation, including designers, managers, technical
writers, typists, and testers. Each of these user categories has its own unique
needs. For example, a designer might want support for the development of

-31-

Feasibility Section &

documentation in the form of a program design language; a project manager
might want tools to do consistency checking on documentation, to make sure
that the documentation corresponds to the code.

The DA is being designed to accommodate the needs of all these users. The
basic underlying mechanisms (i.e., database, user interface) will be in place; all
that will be required is the development of additional tools, built on the existing
system, to support these different needs. Thus, the proposed version of the DA
represents one facet of a documentation support system (see Figure 5.1). It will
eventually be capable of supporting the entire documentation life cycle, but this
will require further development.

5.2.3 Supporting Documentation Standards

The DA is designed to support different documentation standards. To give
a better picture of how this might be done, this section presents a portion of the
proposed SDS military standard [{SDS-83]. In the example presented here, just
one path of the SDS documentation tree is traversed, and an example of how the
DA might represent this information is shown. This example is meant to provide
a rough sketch; it should not be construed as a complete picture of SDS nor as a
complete picture of documentation representation techniques.

Figure 5.2 serves as a map to this discussion; it shows the path through the
SDS documentation that will be traversed in this example. As presented here,
the documentation looks hierarchically arranged, but this is a simplification made
for the purpose of presentation. At each level, the item in boldface is the item
that will be focused on at the next level.

At the top level of the hierarchy (Figure 5.3) are two items, DOD-STD-
SDS, the proposed military standard on defense system software development,
and a set of Data Item Descriptions (DIDs). The SDS standard references all of
the DIDs.

The Data Item Descriptions describe the documents that contractors must
deliver with software. There are approximately 25 DIDs referenced by SDS.
Each DID may reference a number of other DIDs. Figure 5.4 shows the overlap
between DIDs. The figure also distinguishes between several different categories
of DIDs: requirements/design documents, testing documents, and user documents.

Each DID describes the structure of a document. Figure 5.5 presents the
structure in the Software Test Plan (STP). From Figure 5.4, it can be seen that
the STP references several other documents. These references are shown in more
detail in Figure 5.5, where the arrows represent specific places in the STP that
reference other documents.

In addition to the document structure, each documentation object has attri-
butes associated with it, as discussed earlier. In Figure 5.6, there is an example
of some of the attributes that might be associated with the Software Test Plan
DID.

-32-

n““ ,!
S
.
r
“". .

e et
2 B

DRy

Feasibility Section 5

P
-
- ~a

PROGRAMMING)

DESIGN TESTING

- e e e e e

(|
{ |
POCUMENTATION

. \
tomp ! \
ATION DOCUMENTAT 10K
L FUNCTIONS,/
CHANGE INTEGRATION
CONTROL

QUALITY
ASSURANCE

Figure 5-1: Documentation Life Cycle Support

-33-

MANAGEMENT

...........
...........
* CRIEAD

Feasibility Section 5

Standard on Defense System Software Development (Figure 5.3)
Data Item Descriptions (Figure 5.4)
Software Test Plan (Figure 5.5)

Formal Test Requirements (Figure 5.6)

Figure 5-2: Overview of SDS Documentation

DOD-STD-SDS

Data Item Descriptions

Figure 5-3: The SDS Standard (top level)

There may be additional substructure to the structure presented in Figure
5.5. Figure 5.7 presents an example of how to fill in the section entitled “Formal
Test Requirements.” Unlike the higher level structures, this structure presents
suggestions to the author of the document, rather than stating necessities.

The DA weaves these levels together into a network that represents the
relationships and interconnections. Figure-5.8 is an example of how this network
might be represented by the DA. Objects on the left hand side of the figure
represent classes of objects; objects on the right hand side represent instances or
subclasses of these classes. For example, DOD-STD-SDS is an instance of a stan-
dard; the Software Test Plan is a subclass of Data Item Descriptions.

SDS is but one example of what documentation structure might look like;
certainly, many other structurings are possible. As indicated by this example,
the structuring mechanisms provided by the DA are meant to be quite general in
order to provide support for any type of documentation structure.

-34-

Fcasibility Secction §

COMPUTER SYSTEMS
OPERATOR’'S MANUAL

SOFTWARE USER'S MANUAL

V9 V0000000022200 022200220000020020220220220022022222227,

H B R R R R I T TS
..

7
/
/

SOFTWARE REQUIREMENTS SPECIFICATION /

N

/
SN IIIIIIIIII71177777

4 4 INTERFACE

7/
’
/
VL2888 8808844 LIS rrrrrs I//IIII;I/. REQUIREMENTS 5
/
/4
/

/
FTWARE TEST SPECIFICATION

JILLIILIIIILIII I FIIIII 7777777
REPORT

SOFTWARE
PLAN

/

/

; //III/I/I//II///////I///.
2 INTERFACE

/ DESIGN DOCUMENT

/

/

/
/
/
5
/
/
4
/
;
VIS0 TSI IIIII IS4

SOFTWARE TEST

PROCEDURE SOFTWARE

TEST
DESCRIPTION

LIl 7777777777777 777

2 SOFTWARE // /I///////////// ////’
/ TOPLEVEL 7 v, /
; DESIGN 5 ; SOFTWARE ;
; DOCUMENT ; ; DETAILED ;
9///////////////////////. DESIGN ,/r

7 DOCUMENT 5

///////////////////////A

Figure 5-4: Data Item Descriptions (partial list)

APPENDIX A

A Knowledge Base for Supporting an Intelligent Program Editor

References Section 0

9. REFERENCES

[Dean-83] Dean, J. and B. P. McCune, “An Informal Study of Software Mainte-
nance Problems,” Software Maintenance Workshop, Montery, Cali-
fornia, December 1983.

[Domeshek-&% Domeshek, E., D. Shapiro, J. Dean, and B. McCune, ‘“An Informal
tudy of Program Comprehension,”” AI&DS TM-1014-3, March
1984.

[McCune-83] McCune, B., R. Tong, J. Dean, and D. Shapiro, “RUBRIC: A Sys-
tem for Rule-Based Information Retrieval,” Proceedings, COMP-
SAC '83, IEEE Computer Society, pp. 166-172.

[SDS-83] Proposed Military Standard on Defense System Software Development,
DOD-STD-SDS, December 1983.

{Shapiro-84] Shapiro, D., J. Dean, and B. McCune, “A Knowledge Base for Sup-
porting an Intelligent Program Editor,” Proceedings, 7th Interna-
tional Conference on Software Engineering, March 1984, pp. 381-
386.

-48- AR

. . . A Yyt ety -
E TSRS RTINS I Y AT SR IRIT LI

CRPE Y

Y IR IRCRLYRIAY ;‘_A\t'-.-l‘ AL Y RPN

Conclusion Section 8

8. CONCLUSION

Despite the tremendous need for support of the documentation process,
there has been little research in this area aimed at making significant improve-
ments to the current techniques used. As an intelligent tool designed Lo assist
users in all phases of the documentation life cycle, the Documentation Assistant
represents a significant step in this direction.

The focus in this report has been on documentation from the programming
viewpoint; this is a logical place to start, given that programmers already use
various computer-based tools on a regular basis. In addition, current research on
programming environments is leading towards tools like the Intelligent Program
Editor (under development at Al&DS), which provide a natural base for building
documentation tools.

However, to reach the goal of providing total documentation life cycle sup-
port, it is clearly necessary to address the needs of the many other users of docu-
mentation. This report should be viewed as a first step in that direction. The
DA provides a framework for manipulating documentation that should easily
extend to provide this support. To provide support for the entire life cycle, addi-
tional tools and techniques must be developed.

To construct the DA, it will be necessary to make use of existing technol-
ogy, experimental technology, and brand new technology. The building of a sys-
tem like the DA definitely has risks associated with it, especially the parts of the
system that require new technology to be developed. However, given the mix of
technologies that will be used by the system, it is likely that a significant portion
of a DA prototype can be built with minimal risk.

With the rapidly escalating growth Sand cost) of software maintenance,
there is a clear need for the development of new tools and techniques to handle
the problems and bottlenecks associated with the software process. Of these
issues, documentation is possibly the biggest and most crucial one. The Docu-
mentation Assistant is aimed precisely in this direction.

-47-

T e Tt e e e T e et
PRSI ATAR SIS AN NN

Future Research Section 7

documentation that is not in the database. Tools and techniques for aid-
ing the conversion of this documentation may eventually need to be
developed.

e Programming Contezt Model: The purpose of the Programming Context
Model is to keep track of what the programmer is doing. However,
current techniques for doing this are overly simplistic, and if accuracy is
required, a good deal of user cooperation is nceded. The development of
more sophisticated techniques for determining what the user is doing
would ease the task of the user, as well as increase the reliability of this
component of the system.

e Improved Detection of Qutdated Documentation: By making use of the
semantic information that the EPM will provide, it is possible to increase
the accuracy of determining outdated documentation. There is a great
deal of information to be gained from the various semantic representa-
tions; just how much accuracy can be achieved is an open question.

e Consistency Maintenance: The issue of consistency maintenance is a crit-
ical one for both the IPE and the DA. Consistency checking can be done
at many levels. For example, when a documentation object changes, it is
necessary to track down any other dependent documentation objects.
However, determining these dependencies can be difficult. Even if the
dependent documentation explicitly references the changed documenta-
tion, it is unclear if the change actually aflects the dependent object; even
worse, the dependent object might reference the changed documentation
implicitly. As the DA grows more sophisticated, it is necessary for the
consistency maintenance mechanisms to follow.

e Knowledge Acquisition: A great deal of information/knowledge is neces-
sary for the optimal functioning of the DA. To port the DA to different
environments (or to modify what is known about current environments)
old knowledge must be modified and new knowledge must be added.
Tools for aiding this knowledge acquisition process are essential, espe-
cially if the task is to be performed by someone other than the system
developers. For example, in the case of rule-based systems, knowledge
acquisition tools include structured rule editors (to insure that only syn-
tactically correct rules are entered‘), rule evaluators (for determining the
effect of rule sets), rule analyzers (for determining properties such as sen-
s;:ivli)t,y, connectivity, consistency), etc. Similar tools will be needed for
the DA.

-46-

Future Research Section 7

VI
.

AL N S a
'

PROGRAMMER

f"‘f.":‘:" ,.J,"—,. .f‘ r-‘v.!""' A
YAOUARAK
.,...l..l-"l'.l"l') "

-
‘
4

INTELLIGENT
PROGRAMMING
ENVIRONMENT N

~o T RS
Siniataieiat B b
INTELL IGENT DOCUMENTATION| | RN R
PROGRAH ASSISTANT | DEBUGGER ... o
EDITOR | ; i
I 1 Iy
)

I DR
-
Dy

|
I .
!
]
EXTENDED PROGRAM DATABASE

(text, syntax, flow, cliche, intentional aggregate, e
documentation, etc.) Ny

Figure 7-1: An Architecture For Advanced Programming Environments

-45-

D A A DA MR RO ORI R A A At B A e s i S e 2ot 1
NIEAJN

.t
o,

.
-

Future Research Section 7

7. FUTURE RESEARCH -

The plan for buiiding a prototype of the DA necessarily omits many of the
issues and areas requiring significant research efforts. Some of the research issues
that might be addressed in the future are discussed below.

7.1 FUTURE RESEARCH ON PROGRAMMING ENVIRONMENTS

The IPE and the DA are two important components of an advanced pro-
gramming environment currently being developed at AI&DS. The architectural
basis for this environment is the intelligent program/documentation database
capability provided by the Extended Program Model, which will provide func-
tionality usable by a variety of tools. While the combined IPE/DA system would
provide a great boost in capability over existing programming environments,
there is still at least one important aspect of programming environments that our
research does not currently address.

To increase the usefulness of the IPE/DA, the next step would be to incor-
porate support for the dynamic aspects of programming (i.e., tools to support
program execution). These tools would also be based on the EPM (Figure 7.1),
and thus would benefit by having access to the multiple representations provided
by the EPM, including the linkages connecting various program segments and
documentation. With access to this additional information, these tools could pro-
vide capabilities beyond those provided by current runtime support environ-
ment.s.

7.2 FUTURE RESEARCH ON DOCUMENTATION

With respect to documentation, there are a number of directions that would
be logical for further advanced study. A brief discussion of these issues follows.

® Documentation Life Cycle Support: Support for all people involved with
the production and maintenance of documentation must be provided.
This includes support tools for different documentation types (e.g.,
requirements, specification), document entry (e.g., checking spelling,
grammar, style), document monitoring and control, and consistency
checking. The database provided by the DA will be an ideal base for the
development of these tools, since it provides documentation already in a
highly structured form suitable for machine analysis.

e Retrofitting to Eristing Systems: The discussion so far has assumed that
all documentation is already in the documentation database. For new
systems that are built using the IPE/DA, this might be a reasonable
assumption, since documentation will be entered into the database as
soon as it is entered into the computer. However, for programs that have

been developed without the aid of these tools, there will be -
-44- oy
.".n.:’-‘
stk ‘.,1
L
‘;‘v' ok
erereta e A P et et e e AT e e et A I NI A
FEY Y SRSIL AP TR T LT AT APPSR L PE P PR AL L".._'.:".:‘L.""“1’;:!’;:‘;";’:‘\:’3 .‘_‘:;_‘:.“.-.'-: Cada '.:L-‘:A".g':.f_‘..ﬂ‘ ':’;"\ ™

P pT———— "
N A A AR A SN U A ol A AT M st ol S /i A e A -

Work Plan Section 6 :.-.‘;:-j'.

moderate, primarily because the IPE must be modified to accommodate docu-
mentation. However, the highest risk is assuming the availability of a workable
version of the IPE. Even if a prototype of the IPE is available, it is unclear how T

easy it will be to modify the system. 2:‘_% .
Year 5 (1989): .’::1-
D .d ',

The fifth year of the project will result in a more fully intcgrated version of)

the IPE/DA, allowing a user to easily move between programs and documenta-
tion. Advanced capabilities will begin to be developed, including the ability to
model user preferences about various states of the system, as well as the ability
to automatically detect outdated documentation.

As in the previous year, if the IPE system is not sufficiently developed,
integration of the DA into the IPE will be hindered. The task of providing
advanced capabilities for user modelling and outdated documentation detection
should be considered research topics, and thus may be fairly high risk.

The integrated version of the DA will be demonstrated at the end of this
year. An evaluation of the system will also be performed, by applying the DA to
some subset of the code and documentation for a real software system (to be
selected at some future time).

Work Plan Section 6

6.2 TASK DESCRIPTIONS

The following paragraphs describe the tasks in greater detail and describe
the risk associated with each set of tasks.

Year 1 (1985):

The major focus of the first year of effort will be the design of the DA sys-
tem. A large part of the eflort will be to examine currently existing databases
and database tools to discover current technology that could be used in the sys-
tem itself or as an aid during system development. During this year, the internal
representation for the documentation will be developed. The design of the user
interface will be undertaken and will make use of the Rapid Interface Prototyper
system that is currently under development at AI&DS. This system allows for
the user interface designer to study different styles of user interface display and
actions before actually committing the ideas to code.

Years 2 & 3 (1986/1987):

The second and third years of effort will be concerned with the construction
of the actual database, making use of existing tools and technology whenever pos-
sible. The database manipulation functions will be developed during this time.
To enable incorporating existing documentation into the DA, methods will be
developed to allow the user to interact with the system to add preexisting text to
the database. Finally, a primitive “word processing” mode will be added to the
user interface to ease the process of entering larger amounts of text into the sys-
tem.

Depending on the availability of existing software, the risk involved in the
construction of the documentation database may vary; it would range from low
risk (in the case that an existing database system could be used) to moderate risk
(in the case that the database must be designed from scratch).

This initial version of the DA will be used for internal experimentation. At
the end of this period, a demonstration of this system will be provided.

Year 4 (1988):

Much of the fourth year of eflort will be spent in the integration of the DA
into the IPE. As a major step in this task, the ability to associate documentation
with code will be added. This will allow the user to point at a piece of code,
request to see the documentation associated with that code, and have the text
automatically displayed. In a similar fashion, it will be easy to add code-level
documentation to the database at the same time the code is being written. This
year will also include work on providing documentation formatting functions that
will allow hardcopy documents to be produced from the documentation database.

For tasks not involving the IPE, the risk for this year is low; it mainly
involves providing different ways of manipulating documentation. Since a large
portion of the effort for this year will build on the IPE, the risk is compounded.
Assuming that the IPE prototype is available, the risk for the remaining tasks is

-42-

St B oy ——y

. DM 4 NI RN) e e o o b e A e

LI IR A e RCINIDARS S S A I L I A el A G R A A 0 Are At AR A en 4 tef e e b o i S B a Sr il BT
- - LA

Work Plan Section 6

a 6. WORK PLAN

_ This section presents a plan for the design and implementation of an
exploratory development prototype of the DA. This prototype will be able to
make use of the technology and tools being developed as part of the Intelligent
Xnigcgl%m Editor Project, another Navy research project currently in progress at

6.1 TASK SUMMARY

The tasks involved in building a research prototype of the DA are summar-
ized below on a yearly basis.

Year 1 (1985) [estimated effort: 0.8 person/years]

- e Develop an overall system design
r e Design the documentation representation formalism
e Design and prototype user interface

Years 2 & 3 (1986/1987) [estimated effort: 1.0 person/years per year|

. e Construct database

- e Design and implement database functions
e Implement a “word processing’’ mode for documentation
o Demonstrate initial prototype (end of 1987)

= Year 4 (1988) [estimated effort: 1.5 person/years]

e Design needed functionality to integrate into IPE
e Associate documentation with code
e Provide documentation formatting capability

Year 5 (1989) [estimated effort: 2-5 person/years|

e Complete integration into IPE, with ability to document different views
- e Basic method for automatically detecting outdated documentation
e Basic user modeling capability
- e Demonstrate and evaluate integrated prototype (end of 1989)

.—l':f_':'

-41-

T et et T e Tt e aN N e YN L
AP ASCI . P T R S
IR, W, S P S RS R L A

DA
7, .

Feasibility Section 5
b
N
R It will also be important for knowledge-based tools to provide functionality
N even in applications where only a minimal amount of knowledge has been col-
lected. Of course, there is a real tradeoff here: as knowledge is reduced, the abil-
ity to act intelligently is also reduced. It makes little sense to employ intelligent
o) tools without any of the knowledge needed to act intelligently (one might say
that this is a non-intelligent application of technology). While the DA is depen-
- dent on a documentation knowledge base, it does provide a number of useful
- capabilities requiring only a small amount of knowledge engineering. These
: features include the documentation database, documentation interconnection
. (though all interconnections must be explicitly specified by the user), and track-
o ing (though the user must manually enter the appropriate information).
-

These tradeoffs can be described as striking a balance between the work
: required by the user and the work required by the system. As the knowledge
. base grows (along with the ability of the system to handle that knowledge base),
the amount of work required by the user decreases. Cutting back on the
knowledge base does not eliminate the possibility of using an intelligent system;
it just shifts the burden for much of the legwork from the computer to the user.

U

I %

The issue of who performs knowledge engineering (and its subsequent
maintenance) is one that the research community has still not adequately
answered. To date, the people who have done knowledge engineering have been
Al researchers (or people trained by them). The issue is particularly important in
production environments, where continual environmental changes necessitate

. corresponding changes to appropriate knowledge bases. For intelligent systems to

. achieve wider usage, it is necessary to develop tools and techniques for allowing
people who are not Al experts to perform knowledge engineering and mainte-
nance tasks.

» 5.3 FEASIBILITY SUMMARY

The more ‘“intelligent” aspects of the DA will be based primarily on
research already in progress at AI&DS (as part of the ONR-funded Intelligent
Program Editor project). Existing software tools that provide other capabilities
(e.g., text formatting, information retrieval) could be incorporated into the DA
system.

Many current documentation problems faced in real programming environ-

ments are addressed, either directly or indirectly, by the DA. The primary cost

- associated with using the DA (apart from development costs) is the initial collec-
tion and codification of the documentation knowledge base. This is a one-time

cost for each programming project/environment; however, much of this informa-
. tion should be reusable, especially between similar environments.
-
. N]
o -40- A
4 " 1
A R P . » Lte te N LT DRI
T A A A R R R Rt

.......

Feasibility Section 5

5.2.4 Knowledge Acquisition and Maintenance

The difference between the current generation of programming systems and
future generations (e.g., the so-called Fifth Generation systems) is knowledge.
Current generation systems have very little knowledge about how they are being
used and about the semantics of their intended application. For example, pro-
grammers today usually use text editors to edit programs. There is a great deal
of syntactic and semantic information that a program editor could use; ignoring
this information reduces the capabilities of the system and fails to reflect the con-
ceptual levels at which programmers work. Yet this increased capability is pre-
cisely what is required to increase the usefulness and productivity of computer
systemse.

T gL
4 % LA
i)

[

"
Wt
PR
¥ r ‘

AINMRAMNN
UL
A
elaio,

There is, however, a price to be paid for making systems more intelligent,
and that is the cost of knowledge. Knowledge is a rather expensive commodity.
It is costly to hire an expert to help apply knowledge; it is costly to codify
knowledge; it will be costly to take that knowledge and incorporate it into
software that exhibits intelligence.

The artificial intelligence community is quite aware of the value (and cost)
of knowledge. They have coined the term knowledge engineering to describe the
process of acquiring and codifying knowledge. Most Al systems are restricted to
narrow domains in order to reduce the amount of knowledge necessary, thus
reducing acquisition costs as well as reducing the size of the search space.

Despite the cost of knowledge, intelligent systems can indeed be worth the
expense. The gains in productivity and effectiveness provided by intelligence
should more than compensate for the increased costs. However, it should be
recognized from the beginning that it will cost more to develop intelligent sys-
tems; the payoffs come later as systems are put to actual use, and the intelligent
systems prove more economical than their “dumb’’ counterparts.

There are two basic approaches to reducing the costs and risks associated
with intelligent systems development. First, as knowledge based systems become
more common, it may be possible to reuse existing knowledge, at a much lower
cost than redoing the entire knowledge engineering process. It will also be possi-
ble to share knowledge among different instances of a particular system. Second,
as a means for evolving gradually towards more intelligent systems, intelligent
tools can be usable even with minimal knowledge bases. By reducing the initial
knowledge engineering effort, costs can be controlled until the concepts have been
proven.

The knowledge in the DA takes many forms; for example, there is NN
knowledge about the structure of documentation, knowledge about the documen-]
tation process, knowledge about what the user is doing, knowledge about policies RN
and user preferences, and knowledge about interacting with the user. Some of .}.q»::
this knowledge is environment or site specific, and some of it will be valid for R0
many sites. The cost of reusing knowledge will be less than the cost of regenerat- | 3
ing it (just as the cost of reusing software is less than the cost of rewriting it). e

o
STy
-39- RN
N
e
PR,

Feasibility

STANDARD

DATA ITEM DESCRIPTION

TABLE OF CONTENTS

DOD-5TD-5DS

date: 5 December 1983
supercedes: MIL-STD-167

SOFTWARE TEST PLAN DID

number: 0I-T-X116
abbreviation: STP
supercedes: DI-T-2142
phase: testing

SOFTWARE TEST PLAN TOC

sections: { ...}

SECTION

X‘AS-A

FORMAL TEST REQUIREMENTS

SECTION

Section 5

Figure 5-8: Representation of the SDS Documentation Hierarchy

0)
..........

Feasibility

.......

Section 5

Software Test Plan
attribute value
Number DI-T-X116
Abbreviation | STP
Predecessor DI-T-2142
Agency Navy
Phase testing
Scope single CSCI
Length 13 pages
Date S December 1983

Figure 5-6: Attributes of the Software Test Plan DID

All formal tests shall include the following test requirements: e

e The size and execution shall be measured. '?::j-
. o Nominal, maximum, and erroneous input and output values. E
- e Error detection and proper error recovery, including appropriate error f::::j
- messages. %
- -
S Formal Tests for radar tracking requirements shall include the following test -
B requirements: v
A

e Simulated test data on all possible combinations of environmental con- .

ditions. .

N e Input data taken from the environment (*'live data™). _'_::E
o

& Figure 5-7: Example of Formal Test Requirements P

. l"'o".l.:lr -, .l ! L)

Feasibility

Section 5

Limitations/Traceability

Limitations
HER Software Requirements Specification
Tra’cea’blht'y T Interfaer Requirements Specification

Informal Test Plans

Unit Testing
Unit Test Requirements
Unit Test Management
Unit Test Schedule

CSC Integration Testing
CSC Integration Test Requirements
CSC Integration Test Management
CSC Integration Test Classes
CSC Integration Tests

CSC Integration Test Schedule
Resources Required
Facilities
Hardware
Interfacing/Support Software
Source
Formal Test Plans
Formal Test Requirements
Formal Test Management
Formal Test Classes
Formal Tests

CSC Integration Test Table — Software Requirements Specification

v .
~ Data Reduction and Analysis o
Formal Test Table — Software Requirements Specification s
- Formal Test Schedule E
Formal Test Reports — Software Test Report
Resources Required .
. Facilities oS
- Hardware I
; Interfacing/Support Software o
- Source ®
Notes o
Appendix -
. Figure 5-5: Software Test Plan DID i,
o -36- :
- '
L e T T O Lo RS
PR ST S XN N DT P S v I o TR SN A S) PRI A) AN CRR SR R A S S BT ;:};L';

Rl i e g i SN SR it dan e o i i - |

[Procecdings, /th Internatiomal Conterence ol Sobtware
Engincering, Orlando, Florida, Marceh 1984 |
- lof 6

- A KNOWLEDGE BASE FOR SUPPORTING AN INTELLIGENT PROGRAM EDITOR

Daniel G. Shapiro
Jeffrey §. Dean
Brian P. McCuane

) Advanced Information & Decision Systems
201 San Antonio Circle
- Mountain View, CA 94040

ABSTRACT context of u program secarch.
This paper presents work in progress towards a 2. MOTIVATIOR
program development and maintenance aid called the
Incelligeat Program Editor (IPE), which applies . . . i L.
artificial intelligence techniques to the task of An intelligent “f‘l“l systes is & sophisci-
manipulating and snalyzing programs. The IPE is & cated tool for developing and saintsining programs.
[" knovledge based tool: it gains its power by expli- The goal, insofar as it is possible, is to decrease
- citly representing textual, syatactic, and many of the amount of information & progremmer needs to
the eemantic (mesning related) and pragmatic supply in order to creste and maintain a program,
. (epplication oriented) structures in programs. To and to simultaneously increase tha reliability of
g demonstrate this approach, ve implemeat a subset of the resulcing code. This csa be asccomplished by
N this knowledge base, sad a search mechanism called incorporating knovledge about the structure end
the Progran Reference Langusge (PRL), which is able intention of programs into the editing tools used
. to locate portions of programs based on a descrip- to develop and maintsio thew. Perhsps the best vay
l tion provided by a user. to uluunt? this approfch is to present an
~ . allegory having to do with the production of &
~a T technical manuscript.
o This research vas supported by the Air Force Office) . . .
- i; of Scientific Research under contract F49620-81-C- to b"‘:“ :h:‘ :he::.:"fo..n"::rftt.:h‘ss a:“'
RN 0067, the Office of Naval Research under contract o hZP: or pudbli : ;nni' b ‘h i “1'° ° s
T, N00014-82-C-0119, and Rome Air Development Center typist vho does not spesk Eaglish, the result would
- under contract F30602-80-C-0176. be, at best, s word-for-vord copy of the original
manuscript. If it is given to aa English-speaking

typist, simple errors, such as misspelliage snd
(I 1. INTRODUCTION punctustion problems, might be fixed during the
typing process. 1f the manuscript is given to sn
English teacher wmoonlighting as s typist, the

. The effort and expense involved in software result wmight well be s version in vhich the prose
. maintenance have been recognized as & major limica- is emoothed and othervise improved. Finally, if
tion on the capabilities of current software sys- one is lucky enough to find & typist familiasr with
tems. In & study on softvare maintensnce issues in the domsin of discourse (such as the author), the
the Air Force. wve fouad that the process of resulting document wight even have factual errors
comprehending the torm end function of existing corrected and incomplete thoughts identified.
softvare (i.e., wvhat it does snd hov it does it) is
. the largest task in the maintenance process {2]. A progrsmmer selecting an editor system for
vriting code is in s similar situation. A standard
.. The basic cause of chis “comprehension prob- text editor is comparsble to the non-English-
- lea” is the loss of knovledge during the program- speaking typist; text appears exactly as it is
' ming process, caused by factors such as poorly typed, vith no enhancements. The English-speaking
- vritten softvare, jinsdequste documentstion, pro- typist could be compsred to s syntsx-oriented edi-
- gravmer forgetfuluness, and personnel turnover. To tor, vhich can eliminate syntactic program errors
e e address these issues, ve have started a project to and misspelled keywords. The Engliech
SF develop intelligent, knovledge-bssed programming teacher/typist knovs about the language itself but
PR aids, designed to help the progremmer overcome lim- not about the content of the thoughts. This situa-
gy itations of wore traditionsl tools. This paper tion is comparable to s programming language-
-~ describes the initisl phsse of one of these tools, specific editor wvhich applies knowledge about the
‘" L~ san editor known as the Ingtelligent Progrem Editor domain of programming; this editor can instantiate
= A (IPE). The following sections discuss the motive- general programming techniques, catch cectain types
u; tion behind intelligent editing, the design of an of eemantic errors, wake style suggestions, and
T intelligent editor, a dstabase for the editor, and improve the overall flov of the program. The
?; }; 8 scenario demonstratiog an actusl implementation technical typist wvho understands the content of
;J ;J of a portion of the IPE"s database, used in the vhat is being eaid is analogous to an editor chat
P -

utilizes knovledge sbout the application domain; it
can help in slgorithm development sand can catch
certain types of pragmatic errors vhich are depen-
dent upon the specific application domain.

3. TEE INTELLIGENT PROGRAM EDITOR

The Iatelligent Program Editor (IPE) described
in this pnpc} most closely corresponds to the
English teacher/typist mentioned above, in that it
will support textual and syatactic manipulations,
aud have the ability to assist in the implementa-
tion of typical programming sctions. This powver is
obtained through the use of a database that expli-
citly represeats the functional organization of
programs in terms of textual, syatactiec, and
intention-oriented structures. With this database,
the IPE is in e position to become more of s pro-
gramming environment than solely an editing tool.
In this vein, ve are interested in addressing the
folloving design goals {5]).

The IPE should provide a means for naturally
incorporating documentation into the program
development process. 1Im our view, this requires
the ability to liak documentatica into the organi-
zational styycture of a oroeram (similar o
Nelsonu’s (3] concept of Hypertext), and the sbility
to actively use any information cthat is supplied
(to provide programmers with a wmotivation for
including descriptive data). In the IPE, documen-
tation will provide input to a program sesrch
facilicy.

The system should support incrementsl program
analysis. The object here is to employ the
system’s understanding of program structure to
catch syntactic aod certain semantic errors prior
to execution. Examples include identifying vari-
ables that are sccessed before being set (vis data
flov analysis) and detecting programming cliches
that have been incompletely implemented. There is
also a role for error preveantion: some editors
(e.g., [6]) prevent syntactic errors from ever
occurring.

The IPE wvill allovw the user to employ alter-
nate program visualizations. This wmeans allowing
the programmer to exsmine or wmodify code through
any of the representations mentioned above. For
exsmple, a syntax based approach might be sppropri-
ate during program construction, while s graphical
dats flov displsy may be useful within the debug-
ging process.

All of these capsbilities require the use of
multiple program representations, as wvell as
mechsnisas for searching end manipulating the
information they coatsin. Therefore, in the first
phase of the IPE project, we constructed a proto-
type version of this program databsse, called the

Brogxan Model (EPM), and demonstrated it
io the context of program search. The remsinder of
this psper discusses the EPH and the sesrch example
that vas produced.

2of 6

4. TH® EXTENDED PROGRAM MODEL

The Extended Program Model (EPM) provides a
nev way of representing and accessing programs by
defining & vocabulary for discuseing programs which
uses terus that are much closer to the ones vhich
users naturally eaploy. The EPM provides this
capsbility through the use of a database that
represents the structure of programs from a variety
of views. * The EPM can form the backbone for a
aumber of systems vhich exhibit a deep understand-
ing of the orgsnizstional structure snd meaning of
code.

The EPM is constructed in terms of two wmajor
subsystems (see Figure 1) : s program structures
datsbate and s sesrch and updste componeat called
the Program Reference Language, wvhich provides
access to the databsse. In addition, the EPM will
contain & library of "rational form" constraints
that will wonitor program composition for its
structure and intentional content. As s whole, the
system can be thought of as s database msnagement
system for creating and maintasining code. It pro-
vides a search language for sccessing its
knowledge, a facility for performing updates, as
vell as a set of semantic integrity and consistency
constraints for monitoring the validity of the data
it coantains.

EPM

SEARCH

(PRL) MANIPULATION

PROGRAM STRUCTURES
DATA BASE

SEMANTIC INTEGRITY
& CONSISTENCY CONSTRAINTS

Figure 1. The Extended Program Model

4.1 THE PROGRAM STRUCTURES DATA BASE

The EPM”s program structures database is con-
structed in terms of a collection of representa-
tions wvhich reflect the transition from a syntactic
to a more intention-oriented analysis of code (Fig-
ure 2). We are considering these viewpoints to be
abstract data types which facilitate different
sorts of retrieval operations.

!

.'n"‘
[
PN

o
(4

o
AR
“.

o
Cha e TAN
DAL

L

P I
.

[
D

'l'«" "
3.
a.'-‘q..' 3.‘

Ca

00 ey a0 -’r.",’.f.?
i ‘ .
. ’ 22t

AR
»
s A

T

‘e
?

s T a e e .
L A S T
AR

-
-

o e o e
c"':'f,_"._' l_"l "1

»
v

-, %
-

|

-y

‘i. e

SN

UL

AR

A

Iy ol
e e e e e e e

A

.

L

AN R L

OOCUMERTATION

INTENTIONAL AGGREGATCS

TYPICAL PROGRAINING PATTERNS
(cLicmes)

SECAENTED PARSE

CONTROL & DATA FLOW

"y
Figure 2. Representation Levels in the EPM

The cextual representation gives the EPHM the
viev that most text editors provide. It is a low-
level approach, concerned with words and delim-
iters, but it allows for important textual search
operations.

The syntactic viewpoint embodies the rules of
grammar for particular programming languages. The
syntactic database provides the EPM with & vocabu-
lary for programming constructs such as “for"
loops, parameters, and procedures.

The next level of representation is the flow
level, which provides standard data and control
flow information. It provides a vocabulary relst-
ing to the logical structure of programs.

The segmented parse representation defines a
vocabulary for a program in terms of its component
data and control flow. For example, iterations are
decomposed into a set of roles wvhich identify the
subfunctions of a loop. 1ln the breakdown we are
using, loops contain generators, filters, termina-
tors, and augmentations [7]. Generators are eeg-
meats vhich produce s sequence of values. They can
be further refined into initializations and s body,
vhich is the portion that is executed many times.
Filters restrict that sequence of values. A termi-
nator is like a filter, except that it has the
additional potentisl to stop execution of the loop.
An sugmentation consumes values and produces
results. There are other vocabulary elements for
describing straight lioe code,

The taxonomy discussed up to this point pri-
marily captures information about the form of pro-
grams (as opposed to their wmesning). The only
semantic elements we have introduced describe the
substructure of built-in entities such as loops.
The next (more abstract) viewpoint considers pro-
grams to be built of objects with stereotyped pur-
poees. These are called typicsl programming pat-
terns (TFPs). Examples of TPPs include variable
ioterchanges, list insertions, and hash table
sbettractions. These asbstractions are the tools
employed by every expert programmer. Rich has

L T TS L TN
(g . g ¥ .. .A‘h- ‘. X ‘4 .v‘ -

Jof b

defined a library of such TPPs (4] (he wuses the
term cliche; in this paper, wve use both terums
intecchangeadly).

The remaining databases (intenctional aggre-
gates and documentation) provide methods for asso-
ciating the intentions behind a program with
specific features of code. They cspture pragmstic
knovledge relating to the domain of spplication of
the program. Intentionsal aggregates are a type of
formal documeatation that allow the association of
larger program fragments with key concepts (sup-~
plied by the user). They can be used to collect a
set of TPPs and other program segments that imple-~
ment & single conceptual function; for example, a

collection of TPPs representing queue operations

might be grouped (by the user) into an intentional
aggregate representing s scheduler.

The documentation database sllows the user to
associste comments wvith any of the program features
slready described. At the lovest (i.e., textusl)
level, this would take the form of in-line com-
ments. At other representationsl levels, the user
could, for exsmple, document the data flow in a
particular module (saying why an input-output rela-
tionship occurs), justify his use of particular
TPPs, or explain why particular syntactic features
asre employed. The advantage of this technique over
current documentation practice is the ability to
make a direct associstion (via links wmaintained by
the IPE) between the documeatation and what it
talks about, at an appropriate conceptual level.

4.2 KNOWLEDGE ACQUISITION

Since the EPM's database is intended to sup-
port an actusl editing system in the near future,
it is important to address the question of where
ite information is obtained. In our approach, the
different knowledge sources are acquired in part
from the wuser, and in part by automatic means.
Specifically, the syntactic representation can be
obtained directly from the textual represeatation,
and the segmented parse viewpoint can be con-
structed through dats flov analysis techniques of"
the kind developed by Waters (7].

The TPP structures are harder to obtain.
Recent research efforts indicate that general
recognition of cliches may be possible (1), but at
the current time, these techniques have not actu-
ally been demonstrated. The EPM will wuse wmanual
recognition techniques (at least until automatic
recognition techniques have been refined). There
atre twvo manual recognition techniques planned for
the system. In the first, the user points to a
piece of code and identifies it as being a particu-
lar TPP (as & vay of documenting che system); at
this point, once the scope has been narroved down,
it may be possible to identify the subcomponents of
these programming cliches sutomatically. In the
second method, the user uses TPPs for program gen-
eration (as in (8]); by instaatiating a TPP and
“filling in the blanks," the EPM can acquire all
the necessary information.

L
. ’V‘l 4

The intentional aggregate and documentation
vievs wmust be vholly obtained from the user. At a
minisum, the EPH’s plenaced coasisteacy wmechaaisms
vill ideotify aay of this information that may be
out of date dug to modifications to the code,

S. THE PROGRAM REFERENCE LANGUAGE

Io order to demonstrate the feasibility of the
EPK;, wve implemented & portion of the dstabase
described above, sad built a version of the EPM's
search facility, the Program Reference Language
(PRL) which operates on that data. The PRL is a
tool for locating regions of program text based
upoa a description provided by the user. As a sup-
port system, it provides programmers with an
intention-oriented vocabulary for specifying por-
tions of programs in situstions where they may be
unfamiliar vith the detailed structure of the code.
This might occur in the process of editing programs
vhich may be too large to remember explicitly, or
in the act of understaanding code which has rarely
been seen before (as is often the case in mainte-
nance).

The PRL demonstration system sllows program
seazrch based on four of the representations
described above, namely the textual, syatactic,
segmented parse and typical programming pattern
vievs (Figure 3). These databases are connected
through a code region abstraction that associates
program features vith physical sections of program
text.

"R0CRAR $vTAs
™we

‘\\\\\\\\;~ €o0e megtoms

_— T~

SteEnTED
paast TYeieA
(oata &
comtoa. L0V} ATYCRS

Figure 3. The Program Reference
Language Implementation

The PRL has s flat information structure. It
represents each database in terms of a complex tree
or graph structure of frames. Although the system
can arbitrarily coovert between vievpoints by using
code regions as an intermediary, the databases have
no direct links betveen one another. These conver-
sions sre inherently heurietic since the separate

i Sl Nt adl el Sl Wt Pl LN P S St AN - e

4 of 6

representations do not aecesssrily have & one-to-
one correspondence. The information in each dsta-
base is either sutomstically derived, or can be
reasonably obtsined from the user. In situstions
vhere the latter is necessary, ve have assumed that
information say be provided in an incomplete form.

5.1 CODE PAINTING

From a computastional point of view, the wmain
problem involved with this multiple represeatation
approach is to define a mechanism that is able to
compare information obtsined from the different
sources of knovledge. The PRL accomplishes chis
via the code region abstraction, vhich functions as
4 common language that each of the representations
can use to communicate.

Code regions support two different approaches
to search. In the first method, which ve csll
sequential filtering, the user makes s gross stab
at selecting a code region by generating all of the
elements vhich satisfy some fairly general condi-
tion. He then sequentislly restricts that set by
applying more and more conditions. For exsmple, to
find “the loop vhich computes the sum of the test
scores”, he locates the set of all loops, and then
restricts it to the ones wvhich involve test scores
and summations.

In the second approach, the user identifies a
collection of items, possibly from several dif-
ferent datsbases, and intersects them together to
find the elements which satisfy all of the condi-
tions he wants to impose. In this "code painting"
approach, the PRL combines these items esszotially
by overlaying the corresponding regions of code.
For example, 1locating "the loops which ¢. upute
sums"” is done (figuratively) by coloring all loops
red and all places that compute sums yellow. Any
region vhich comes up orange has all of the proper-
ties that vere desired.

Code painting is a deliberately coarse affair.
It is designed to exploit the kind of incomplete or
even slightly insccurate information which the EPK
vill contain, given that wuch of the data is pro-
vided by the user. In some cases, code painting
way not identify the exact section of the program
which the user desired, but in the context of an
interactive system vith a ecreen oriented display,
“close” will be good enough. To help the user see
the effects of code painting, it is possible to
highlight the identified section(s).

5.2 A SCENARIO USING THE PRL

The following example shows how the PRL wuses
the code painting parsdigm to ansver the question
“find the initislizations of the loop which com-
putes the sum of the test scores”, given the Ada
program shown in Figure 4.

[,

Ty
AL
[

P A Bl PR 1 7 A S L WAL IR A MO iy Bl P64 i e Riobolic

foc MAXSIZE in 1..10 loop

R 90 [PRI N i S S et g ioft 4e, p "l

5 of 6

TOTAL := ARRAYSUM (TEST-SCORES, MAXSIZE);

put (TOTAL);
end loop;

fuanction ARRAYSUM (A: in ARRAY; N: in INTEGER) return INTEGER is

begin
SUM: REAL:= O;
for I in l..N loop
SUM:= SUM « A(X);
end loop;
return SUM;
end ARRAYSUM;

Figure &. The Ada Program Used in the Scenario.

In this exsmple, the user starts by identify-
ing three sets of data, corresponding to the summa-
tion TPPs, syatactic loops, and segmented parse
frames involving the test score array.

> (iadex “summation tpp-database)
=> TPPsetl

> (index “loops syntsx-datsbase)
=> LOOPsetl:(length 2]

> (index °“TEST-SCORES segp-database)
=> SEGsetl:{length 6]

The progrsa only coatains one TPP, but there
are two loops, and several segments vhich relate to
the variable TEST-SCORES. It is important to
sotice that all of these segments use the data con-
tsined in the varisble TEST-SCORES but do not
Decessarily refer to it by that name (for example,
the litersl *“A(I)” in the ARRAYSUM function
accesses the test score array). This association
is apparent from the dats flov saslysis within the
segmented parse.

The user intersects these descriptions by
iavoking the code painting parsdigm. The code-
painting algorithm returns the largest region of
text which can be described in all three ways.

> (overlay-code~regions TPPsetl LOOPset] SEGsetl)
=> CODE-REGION]
**for I in 1..N loop
SUM:= SUM + A(I);
end loop;**

In order to compute this information, the
overlay function sutomatically converts the input
sets into their corresponding regions of code.
Most of these translations are sutomatically avail-
abie (though heuristic in nsture). In the case of
the TPP, the user had to define that mapping at
some time.

At this point, the user has identified & loop
which computes the sum of the test scores. In
order to find the initializations of this code, he

views this region from the segmented parse perspec-
tive (vhere initializations are represented expli-
citly), and scans it for segments of the appropri-
ste type. This is & filtering operation, in which
the user spplies restrictions to a previously iden-
tified set of objects.

> (Filter (Segs-Within CODE-REGIONL)
*(Seg-Type “initialization"))
=> SEGset2:{length 2)

The PRL coaverts CODE-REGION]L to a set of seg-
mented parse frames (a heuristic process), sad the
function Segs-Within enumerates the subsegments it
contains. The system identifies tvo initializa-
tions as a result. The user prints them by con-
verting them to the textual viev.

> (show! SEKiset2)
«> for I in **1, N** joop
a)> ®*SUM: REAL := ;%%

The snsvers correspond to the initializations
of the iteration variable "I", and the accumulation
variable, "SUM". tNote that the PRL retrieves the
second initislizatiom, even though it is lexicslly
outside of the summation loop itself. It is iden-
tified from the segmented parse snalysis, which
associates a loop and its initislizations no matter
ho: far apart they might have been in the original
code.

6. CURRENT STATUS AND FUTURE WORK

AI&DS is now developing a prototype version of
the IPE (in a three year, 2-) person effort), vhich
is intended to demonstrate the efficacy of our
knovledge based approsch to the design of program-
ming support tools. The prototype will embody a
portion of all of the facilities thst have been
described. The IPE is currently targeted for the
Ada langusge. It will initially run on a Sywmbolics
3600, a fast, personal LISP computer that features

:.‘_':.
t 6 of 6 Lo
b4
- . L
2
:: s high-cesolution bit-wmap display, but it is being oy
_.: designed to be portable to other systems (in par-

ticular, Unix).

Ve expect to sugmeat the EPN°s database to

._ include more pragmatic information (e.g., the rela- .
i tion betveen requiremeats and program etructures), -
' and wve intend to extend the PEL to the point vhere oo

it vill be able to sutomatically plsn and carry out -
. search requests of the kind demonstrated in this :-f‘
L paper (based on a single user query). Vhen these . s'-'.}:
- extensions are complete, the PRL vill define a more -

formal reference language.

¥
)

[}

4

The task of building a prototype for the IPE

Y]

Tt

KN iavolves a oumber of issues including the incremen- e
tal modification of databases, and the recognition iy,
of user inteations in code. In order to solve Ay

T these problems in the context of our applied -:

S research, wve expect to rely heavily on methods for o

[eliciting information from the user, snd to focus
on template-oriented techniques for manipulating L?

. programs. ity
-~ et
- A

L
o
Acknoviadgeagate o

We vould like to thank Michael Briustowicz sad Eric
Domeshek for their comtributions to this project.

r;‘

7. REFERENCES

. 1. Brotsky, D., Master’s Thesis, MIT, forthcom-
ing.

. 2. Desn, Jeffrey 8., and Brisa P. McCune,

K “Advanced Toals for Software Maintenance®,
AI&DS TR 3006-1, October 1982,

3. Nelsoca, T., “A Nev Home for the Mind," Datams-
@ tion, March 1982.

. 4. Rich, Charles, "Inspection Methods in Program- P
wing”, AI-TR-604, Artificial Intelligence I
Laboratory, MIT, 1981. f.'?

LI
L
[ad
.
~ ¥
FAN

Shapiro, Deniel G., Brian P. McCune, and
Gerald A. Wileon, "Design of an Intelligent
Progras Editor™, AL&DS TR 3023-1, September

-

1982. v

(S0

. 6. Teitelbaum, T., T. Reps, and 8. Horwitz, "The },:'

Why and Wherefore of the Cormell Program Syn- :\\‘.r_

. chesizer”, Procsedings, ACH SIGPLAN/SIGOA
oo Isxt Manipulation, June 1981, o
& pp. 8-16. ¥

7. Waters, Richard C., "Automatic Aanslysis of the

~, Logical Structure of Programs”, AI-TR-492, s

N Artificisl Intelligence Laboratory, MIT, 1978. -~

LN - b

8. Watets, R., "The Programmer‘s Apprentice: Ny

. Knovledge Based Program Editing,” [EEE Irsn- ’t\

3 sactione oo Softvere Engineering, SE-8, 1, B

L Jenuary 1982, pp. 1-12,)

- t\ -

'\--

D '?‘:

& b

- _u:‘.

%

r

-’ LAY

e et
P\‘

o wr . a m ge e e e . e Rt b "2t et T ATV, e e .. N

!E:.\f\ -'.-\.i\. \;n\' A YU AR SRR A B -.'.\',"7-.‘.'_‘.,';\'- " e \J:. s’ LS SO .'.‘.'.%'_\".‘."\':u':\'. WA AIEN -“k:. .-.':\‘h-.‘h-.'.;“\‘-\'.: k;‘

-.]
. -#

i
D)

[

A System for Rule-Based

APPENDIX B

Information Retrieval
<o

RUBRIC

- .
e s
o’

-
.
]

Iy '.;-‘4.'.

PRI
LR
*s .

fe

S

oo
teale

Cm Tyt amms o omn A i : A S L B "

B

{Invited paper, COMPSAC '83, November 1983.]
1

RUBRIC: A SYSTEM FOR RULE-BASED INFORMATION RETRLEVAL

Brian P. McCune, Richard M. Tong, Jeffrey S. Desn, Daniel G. Shapiro

Advanced Information & Decision Systeus
Mountaia View, Californias

ABSTRACT

A research prototype softvare system for con~
ceptual information retrieval bas been developed.
The gosl of the system, called RUBRIC, is to pro-
vide wore sutomated and relevant sccess to unfor-
matted textus] databsses. The approach is to use
production rules from artificial intelligeace to
define a bierarchy of retrieval subtopics, with
fuzzy context expressions aad specific wvord phrases
at the bottom. RUBRIC allove the definition of
detailed queries starting at a conceptual level,
partial matching of a query and s document, selec-
tioa of ooly the highest ragcked documents for
presentation to the user, and detailed explanation
of hov sad vhy s particular document was selected,
Initial experiments indicate that a RUBRIC rule set
better matches human retrieval judgment than a
standard Boolean keyvord expression, given equal
smounts of effort in defining each. The techaniques
presected may be useful im stand-alone retrieval
systems, front-ends to existing information
retrieval systems, or resl-time document filtering
and routing.

1. TRE IMPORMATION RETRIEVAL PROBLEM

The three most common approaches to textual
information retrieval (see the vertices of the tri-
angle in Figure 1), vhen used in isolation, suffer
from problems of precision and recall, understanda~-
bility, and scope of applicability. For example,
Boolesn keywvord retrieval systems such as the com-
sercial DIALOGC system operate at s lexical level,
and hence ignore much of the aveiladble information
that is syntactic, semantic, pragmatic (subject-
matter specific), or contextual. The underlying
ressoning behind the responses of statistical
retrieval systems [Salcon & McGill-83} ie difficule
to explain to & user in asn understandsble and
intuitive wvay. Systems that vely on a semantic
uaderstandiog of the nacural leagusge that ie
preseat in documents (Schank & DeJong-79) must
severely restrict che vocabulary and documeat
styles slloved (e.g., to partially forwatted,
stereotypic messages).

In addition to being used by epecislisce, ian
the cear future large on~-line document repositories
will de made aveilsble via computer netvorks to

S W ek W AT N N N AT A YN I T T g e A A RN R Ath

QwIcein farQuIncy

TCOMIES ppa0timaty MALTSIS
STRING MATCHING XEYVORD
1 APPROACH

S00LLAN (EPACISIONS

[(S] Ao At (EPa(isiong
S $ICN LETRACTION

rATCHING
st
COMCLPIVAL RLPCSENTATIOn
arroresi SILC Infeagece
rowurios saTvesL LAsCMEE

ruasing
CARCRAL TFCRLnCC

A e —

Figure 1: The Information Retrieval Triangle

RATURAL LanCUAGL
L O 2

relstively nsive computer users. For both classes
of wusers, it is important that future retrieval
systems possess the followving attributes:

=~ Detsiled queries should be posed at the user’s
owa conceptual level, using his or her vocabu-
lary of concepts and vithout requiring complex
programmiung.

~ Partisl wmatching of queries snd documents
should be provided, in order to mirror the
imprecision of human interests.

~ The number of documents retrieved should be
dependent upon the needs of the user (e.g.,
uses for the documents, time constraints on
reading them).

- A logical, understandable, and intuitive expla~
aation of why each document was rtetrieved
should be available.

- The user should be able to easily experiment
vith and revise the conceptual queries, in
order to handle changing interests or dissgree-
ment vith previous system performance.

-~ Conceptual queries should be easily stored for
periodic wuse by their suthor and for charing
wvith other usere.

v, - o

AAIEY o

LI
LA e
W | -y

-
o
.
o
"
.
[N

MO
' l‘ " .
L Ay

.
. 'I.l

e 8 .
2 0 e 0’

L]
o' 0

s

IC

2. A KNOVLEDCE-BASED APPROACH

la order to address tbe issues raised above,
ve bave created s prototype kaovledge-based full-
text information retrievsl system called RUBRIC
(for RUle-Based Retrievel of Informstion by Com-
puter). RUBRIC integrates some of the best charac-
teristics of sll three basic approaches to informa-
tion retrieval (Figure 1) vithin the framewvork of a
standard srcificial intelligeoce technique,
Queries are represented as a set of logical produc-
tion tules that emable the uwser to define retrieval
criteria veing much better semantic and heurietic
controls thaan can be found in curreat retrieval
systems.

The rules define a bierarchy of retrieval
topics (or councepts) and subtopics. By oaming a
single topic, the user automatically ianvokes &
gosl-oriented search of the tree defined by all of
the subtopics that are used to define that topic.
The lovest-level subtopics are defined in terms of
pattern expressions inm a text reference language,
vhich allows keyvords, positional contexts, and
simple syntactic and semantic motions. Each rule
msy bhave a wuser-provided beuristic veight. This
veight defines how strongly the user believes that
the rule”s pattern indicates the presence of the
rule’s subtopic. Technical issues that arise vhen
information retrieval is vieved a6 a prodlem in
evidentiary reasoning sre discussed in (Tong et
sl.-838).

To perform a retrieval RUBRIC uses the set of
tules for a topic to creste & heuristic AND/OR goal
tree that defines at ite leaves what patterns of
vords sbould be preseat in documents, and in what
combinations.

Document recsll by RUBRIC is enhsnced by che
use of higher-level notions than simple Boolean
combinations of keywords. Retrieval .precision is
improved by the wuse of variable wveights oo esch
rule to define the certsinty of match. These
veights make it possible to present to the user
ouly partial wmatches above some threshold. By
traciog through rule invocation chains, an explana-
tion facility sllows the user to see exactly vhy a
document was retrieved and wby it vas assigned its
overall certainty or importence wveight. This pro-
motes experimentation and sppropriate modification
of the rule base. The retrieval vocabulary to be
used is wuvorestricted, beiog left up to whoever
creates the rules. Rule sets may be stored in pub-
lic or private rule *libraries”, so thet useful
subtopics may be shared among users, thus simplify-~
ing the task of defining new topics.

A rule-based query can be wmore complex than
the keyvord expression that might be used with a
Boolean retrieval system. Therefore, we expect
rule-based retrieval to be wused initially for
spplications in which the same query is wmade
repetitively over osome period of time., 1In such
situstions people wvho are trained RUBRIC users but
not programmers ehould be villing to expend more
effort to develop & detailed rule-based definition
of the query topic.

Although RUBRIC is & knovledge-based systea,
it really is 0ot an expert systes ia the vaeual
sense. In an expert system the system”s knovledge
bsse is an sttempt to defioe vhat is kaown about
some field of inquiry (e.g., infectious diseases,
geology) ia & useful form analogous to that ueed by
hunan experts. Although the knovledge is nqever
couplete and perhaps not agreed upon by ll
experts, there exists some underlying theory or
physical wmodel that all concerned believe. In the
csse of informstion retrieval, as in other areas of
prefereace such as politics or matters of style,
there is no ‘“right" asnsver. Heace, RUBRIC is
really & system for capturing aund evaluating human
preferences. Preference systems are likely to play
a wuch larger role in the future, as artificial
iotelligence tackles the problem of supporting com-
plex, multi-attribute decision weking.

J. EXPRESSING QUERY TOPICS AS PRODUCTION RULES

RUBRIC gains its pover from the knowledge base
of retrieval rules at’its disposal. An example set
of rules that defines the topic of the 1982 World

Series of Baseball is given in Figure 2. These
fifteen rules define & wmain topic, called
World_Series, and a number of subtopics. Thé sub-
topics are used to define the main topic, but may

slso be wused as query topics on their own or as
subtopics of other main topics. This rule set is
by no means complete; however, extensions in the
forw of additicnal tules are easy to wmake.

Each rule defines a logical implication; that
is, the existence of the pattern on the lefcband
side of the arrov (“=>") implies the existeace ot
the topic named on the rightband side. Thus, »
rule definés the topic or concept nemed in its
righthand eide. There may be multiple rules about
the same topic, and RUBRIC will use each as an
equally valid alternate definition (i.e., there is
an implicit OR). The lefthand side of a rule is
itse body, which defines s pattern to be matched.
This can be the topic named in the righthand side
of another rule, s text reference expression
(defined delov), or s compound expression that

defines the logical AND (denoted by *&") or OR
("|%) of two or more other rule topice or text
reference expressions. Explicit text to be matched
vithout further interpretation is surrounded by
quotstion marks; names of topice and text reference
language coustructs are not. The lsst element in a
rule ie ite weight, vhich is & resl number in the
interval [0,1). It represents the rule definer’s
confidence that the existence in a document of the
pattern defined by the rule’s lefthand side implies
that the document is about the topic named ian the
rule’s righthand side. If a veight is omitted, it
is aseumed to be 1.0 (i.e., absolute confidence).
Note that a wveight is a number made up by a human
user, based upon hies or her experience and insight;
s weight is pog & statisticsl quantity.

team | event => World_Secies

St._Louis_Cardinals | Milvaukee_Brevers => tesm

“Cardinale" => St._Llouis_Cardinale (0.7)
Cardinals_full_psme => St._Louie_Cardinals (0.9)

ssint & “Louie™ & “Cardicale®
*=> Cardinals_full_name

“S¢.* => saint (0.9)
“Saint® => gaint

“Brevera® => Milwvaukee_Brevers (0.5)
‘Milvaukee Brevers® => Milvaukee_Brevers (0.9)

‘World Series" => eveat
baseball_cbampionship => evear (0.9)

baseball & championship => baseball_championship

*ball™ => baseball (0.5)
“baseball™ => baseball

“champioaship“ => chsmpionship (0.7)

Figure 2: Rule Base for Topic of World_Series

A text reference expression may be a single
keyword or phrase, or & lexical context vithia
vhich tvo keyvords or phrases must be found (e.g.,
vord adjacency, same sentence, same paragraph).
So, for example, one can specify that twvo patterans
are of interest only if they occur in the same

sentence. Fuzzy (partial) metching versions of
these contexts are also alloved. RUBRIC's fuzzy
psttern matcher returns a value in [0,1] chat is
proportions] to tbe degree that the phrases are in
the desired context, i.e., inversely proportional
to the logical distance betveen the two objects in
the document. For example, vhen matching a fuzzy
ssme-sentence cootext, Cvo phrases in the same ¢en-
tence might receive s weight of 1.0, wvithin adja-
cent seatences 0.8, etc.

Rules often define alternste terms, phrases,
and spellings for the same concept. Thus, rules
csn slso provide a simple bhierarchical thesaurus,
vith varisble weightes defining the degree of cer-
tainty with vhich a particular varisot is to match.
For example, in Eanglish “St." is used as the abdre-
viation for both “Saint™ aend “Street™, and thus
“St." is veighted less that the keyword “Sainc” in
Figure 2. Rules csn also aid multilingual informa~
tion retrieval. For example, if the databsse con-
tsins text in multiple langusges, then the 1lowvest
level(s) of rules might defiue synonyms in each
language of intecest. The wore conceptusal,
langusge-independent rules higher in the hierarchy
vould remain vachaaged.

It has been found useful to provide a nev type
of rule in RUBRIC, cslled & podifier rule, which
enables the user to incorporste suxiliary (or con-
textual) evidence into the query. Auxiliary evi-
dence ie evidence that by iteelf neither confirms
sor disconfirws s Dhypothesis, but wvhich wmay

.Tetrieval

incresse (or decrease) our belief if seen in con-
junction with some primary evidence. The form of
such a rule is

if A, them C to degree vis

but if also B, tbhea C to degree vy
vhere if vy is grester than v, then 3 is discon-
firming uuxxlxn:y evidence, and if v, is less then
v, then B is coufxrnxn; nuxxlxary evidence. This
has the effect of interpolating betveen w, and v,
depending upon the certsinty computed for lhe nuxx-
liary clause B. Thus ve might have & rule of the
kind:

if (the story contsins the literal string “bomd"),
thea (it is about an explosive device)
to degree 0.6;
but if also (it mentions a boxing magch),
thea (reduce the strength of the conclusion)
to degree 0.3

Here ve see the concept of disconfirming evidence
in operation; notice that by itself being about the
concept boxing match is mot evidence that can be
used to support or deny the conclusion we are try-
ing to establish.

Knovledge bsses of rules are expected to
evolve over time. Ilaitially the set of rules pro-
vided in a knovledge .bsse will capture a samall por-
tion of the kiods of knowledge required. Nev rules
are essily added to RUBRIC, currently by means of a
standard dieplsy-oriented text editor. Existing
rules may be modified for experimeatstion to pro-
vide feedback for honing their logical structure,
keyvords, and wveights.

4. QUERY PROCESSING

A set of rules defines a logical hierarchy of
topics aand subtopics (Figure 3). A
specific recrieval request is carried out by
gosl-oriented inference process similar to that
used in the MYCIN wmedical diagnosis systea
(Shortliffe-76]. This process creates and evalu-
ates an AND/OR tree of logicsl retrieval patteras.
The root node of this tree represents a semantic
topic or concept that the user waats retrieved;
nodes farther down in the tree represeat iatermedi-
ate topice vith which the root topic is defined;
sud podes at the leaves of the tree represeat pat-
terns of vords that are to be searched for im the
database. Each arc in the tree is veighted such
that the intermediate topics and keyword expres-
sions contribute, according to their weight, to the
oversll confidence that the root topic has also
been found. (Unlabeled arce in Figure 3 have an
implicit veight of 1.0.) Arcs representing the
conjuacts of an AND expression are linked together
nesr their common dase in Figure 3.

RUBRIC supports s number of calculi for inter-
preting the
certainty or

rule veighte. Weights are trested as
partisl truth values, sot as

P s

L

. ..'

vorld_Sertes (8.0))

Lictne

Pater nest 10 oS @ priest iafereace weight

unter tn parentheses following nede nome:

weight of the aode o3 computed feor assnple tesa (0)
Ialng Ley “sell®,
- 1°, end " g .

St bewts _Cacttaals (8) Wilwaviee Srevers (9)

“Srevers” (0) “Wilwarber Srevers” (0)

..A.

Coratmaln® (6} Cordinaly
futl_neae (0)

selnt {0) “Lewis” (8) “Cereinals® (0}

A

“30.° (0] “latae® (0)

tvent {0.43)

*warld Sartes® (0} baradall _ghaaptonntp (0.7)

N

tasedelt 1.0} chasplentniy (0.7)

N,

“Bell® {1.0) "tsnatedV®(1.0) “chemplonshie® {1.0)

Figure 3: Rule Evaluation Tree for World_Series Topic

probabilities. Each calculus defines hov to com-
bine the uncertainoties during such logical deduc-
tions as AND, OR, and implicstioan. The default
method is to wuse the functions minimum, maximum,
sad product to propagate the veights across AND and
OR arcs and implicetion nodes, rcespectively
[Shortliffe-76].

Referring to Figures 2 and 3, ve nov describe
hov RUBRIC processes s query. (Annotated traces of
the systes’s operation are found in [McCune et
al.~83].) thea the user types io the conceptual
query World_Series, RUBRIC searches its rule base
for all rules thst provide definitions for this
topic (i.e., that have World_Series on their righe~
hand sides). There is only one such rule in Figure
2, so RUBRIC expande that rule according to its
lefthand side. The result is that the
Vorld_Series, team, and event nodes of Figure 3 are
created, as well as the tvo arcs betveen them.
Since tesm and event sre themselves the names of
topics, rather thao textual patterns, RUBRIC
searches its rule bsse for tbeir definitions. This
process cootinues recursively uatil all leaf nodes
of the tree contain textual pattergs.

At this poiat each document iu the database is
matched sgsinst all of the phrases in the leaves of
the tree. For a givea documeat, if & phrase is
found somevbere in the documeat, the corresponding
node ia the tree is assigned a value of 1.0, other-
vise 0. Then the weights at the leaves are com-~
bined and propsgeted up through the tree to deter-
mine the overall weight to be sssigned to this
document .

For example, if a document contained the vords
“ball”, “basedball®, and “chempionship*”, and no
other vorde referred to in the example rule bdase,
then the nodes of the tree vould be asssigned the
veights showvn ia parentheses in Figure 3. The
“5all”, “basedall”, and "championship” lesf nodes
all receive o veight of 1.0, and sl]l other lesves

receive a weight of 0. The baseball node would
thea be sssigned the value 1.0 because that is the
maxipum of (1.0 nultipled by 0.5) and (1.0 times
1.0). Similarly, the championship node receives
the value 0.7. Then, because it is an AND node,
the baseball_championship node gets the value 0.7,
vhich is 1.0 times the winimum of 1.0 and 0.7. The
eveant node then gets the value 0.63, vhich is the

maxisum of (0 times 1.0) and (0.7 times 0.9).
Siace there ate no keyvwords iu the document that
support the team subtopic, the oversll wveight of
the watch of the World_Series topic oo this docu-
weat is 0.63 (1.0 times the maximum of 0 snd 0.63).

Other combioations of keywords and phrases in
a document can satisfy the concept of World_Series
to varying degrees. Figure 4 shows the other
veighte possible for the World_Series topic,
depending upon the dominsnt phrases thst occur in
the document.

Support for
World_Series Topic

Phrases Present im Document

‘World Series” 1.00
“Saiat®, 'Louis*, “Cardinals" 0.90
*“Milvaukee Brevers" 0.90
“se.", 'Louis™, “Cardinals" 0.81
“Cardinals” 0.70
“baseball", “championehip" 0.63
“Brevers” 0.50
*ball”, “champioaship" 0.45
oone of the above 0.00

Figure &: Possible Veights for World_Series Topic

[

(]

P
e =
Ll Ll

’gfr

5. USER INTERFACK

A user need oaly see the highest wveighted
documeants. After the database has beeu searched,
each document that vas considered has an associsted
veight that represeats the systes”s confidence that
the document is relevant to the topic requested by
the wuser. RUBRIC sorts these documents iato des-
cending order based upon their veights, and groups
the documents by spplying statistical clustering
techuiques to the weights. The user is then
presencted wvith those documents that lie in a clue-
ter cootsioing at lesst one documeat vith a weight

sbove & threshold provided by the user (e.g., 0.8
or above). Clustering prevents an arbitrary thres-
hold from eplitting closely ranked documeats. The
tbhreshold may be veried depending wupon hov much
time the user bhas svailable to read documents, hov
important it is not to wmiss amy poteatially
relevant ones, etc.

RUBRIC is able to explain why s particular
docusent wvas retrieved. This cepability ie very
important for instilling confidence in wusers and
helping them get a good enough feel for the opera~,
tion of the system that they can successfully write
and use their own retrieval rules. RUBRIC can.
displsy esch rule that results in a non-zero weight
being propagated, as wvell as the value of that
veight. RUBRIC can also show each sttempt to match
s wvord or phrase to the document, along vith
vhether or not it matched.

6. EXPERINENTAL RESULIS

Ve hsve dooe preliminary experiments with
RUBRIC to exsmine the improvements that can be
schieved over a conventional Boolean keyvord
approsch. As sn experimental dstabase for testing
the retrieval properties of RUBRIC, ve have used a
selection of thirty stories taken from the Reuters®
Nevs Service. Our basic experimental procedure is
to rate the stories ia the datsbase by inspection
(i.e., define a subjective ground truth), construct
s rule-based representation of a typical query,
apply the query to the databsse, and then compare
the rating produced by RUBRIC with the a priori
rating.

We concentrste on tvo basic weasures of per-
formance. Both of these sre based oo the idea of
ueing & selection threshold to partition the
ordered stories 50 that those above it are
“relevant” (either fully or marginally) and those
belov it sre “not relevant™. In the firet ve lower
the threshold uvatil ve iaclude all those deemed 3
priori relevant, and then count the number of,
unvanted stories that are also selected (denoted
'r). In the second ve raise the threshold until ve
exclude sll irrelevent stories, and then count the
sumber of relevant ones that sre oot selected

(denoted K,). The first definition therefore gives
us ao insight into the system’s ability to reject
uvovsnted stories (precision), vhereas second gives
us insight into the system’s ability to select
relevant etories (recsll).

We selected as a8 retrieval coancept ‘violeat
acts of terroriem™, and then constructed an
sppropriste rule-baced query. This is summarized
in Figure S, vbere ve make extensive use of wodif-
ier rules. An auxiliary clause is shown linked to
fts conclusion by a directed arc labeled *Modif-
ier”. Application of this query to the story data-
bsse results in the story profile shown in Figure
6. (Notice that for presentation purposes the
stories are ordered such that those determined to
be a priori relevant are to the left in Figure 6).
The performance scores for this experiment are

Precisjon: Np = | vhen we ensure that Ny = 0, and

Recall: Ny = 5 vhen we ensure that Np = 0

This is almost perfect performance, being warred
only by the selection of story 25, which, although
it .contains many of ‘the elements of & terrorist
article, is actually s description of an uasuccess-
ful bomb disposal attempt,

1CanoRISn —e—todificr 1O gpaqom

.. 1.0
.. RCYOLUTION SERTENCE
(oPPOSITIC(N,
COvVERMMENT)

TEMORIST-EVENT e t2¥000r 1.0 yqqucgqmarion

B ' s

SENTENCE {KILLING, POLITICIAN)

ATION Modifier 1.0 ACTOR
1.0 1.0
-4 SPECIFIC-ACTOR GINCRAL-ACTOR

VIOLENTVONT o ttb0ie0 1.0 g gur.grrEcT

Ry 5]
“OCAD “OCAIN" "DEORIS® 4.0

YIOLENT.ACT

1.0 \c
1.0 J1.0 R

RILLING SOMBING KIONAPPING CNCOUWTER TAKCOVIR

Figure 5: Rule Base Structure for Concept
of Violeat Acts of Terrorisw

PRI
A e

{ax

To compare RUBRIC againet a more conventional
)prosch, we coastructed two Boolean queries by
Jing the rule-bssed paredigm and setting all rule
rights ¢o 1.0 (chus iocidentslly shoving that our
1thod subsumes Boolesn retrieval as s special
jse). One of these queries is showa ia Figure 7.
i sn AND/OR tree of sub-concepts. The only
fference betveen the two Boolean queries is that
1 the first ve insist on the conjuaction of ACTOR
W TERRORIST-EVENT (as showm), wvhereas in the
1cond ve require the disjunction of these con-
ipte. The conjuactive form of the Boolean query
isses five relevant stories and selects one unim-
)rtaat story; vheress the disjunctive form selects
|11 the relevant stories, but at the cost of also
rlecting seven of the irrelevant ones.

While these results represent only & prelim-
aary test, ve believe that they indicate that the
JBRIC approach sllovs the user to be more flexible

in the
increasing
traditiona] Boolean query tends either to over- or

specification of his or ber query, thereby
both precision and recsll. A

under-constrain the asearch procedure, giving poor

recall or poor precision. We feel that, given
equsl amounte of effort, RUBRIC asllove better
models of human retrieval judgment than csn be

achieved vith traditional Boolean mechanisae.

We have also explored the effects of wusing
different calculi for propagating the uncertainty
values vithin the system [Tong et s1.-83A). Among
these calculi are well-known classes such as those
that use ‘wmax™ and "min®™ a¢ disjuact and conjunct
operstors, and those (so-called 'Bayesian-like")
that uvse “sum”™ and “product®. Our initisl conclu-
sion is that the calculus used is not the major
determinant of performance, but that it does
intersct with hov rules are defined.

STORY RATING
10 o - Rating assigned by
RUBRIC (normalized)
9 “relevaat®
LB
. /A
¢4
i} “marginally “not relevant®
~ relevant®
[.
Pd
z-
4
0
38 9192122022946 3 727 12 61000 1213 14 15 16 1718 20 24 25 28)0
STORY NUMBER
Figure 6: Story Profile from RUBRIC Experiment
TEAROR| SH
TERRORIST-CVINT ACtoa
YIOLENT-CVENT ASSASSINATION SPCCIFIC-ACTOR GINCRAL -ACTOR
/’\ /O\ /l\ (3 /I\ .
SLATING BOPBING TAR(OVER SLAvIeG POLITICIAN T Mo CINAT CRLYOLU- TGAR- RUTL (M

/N

rionaxy LT

orvice amoston
Figure 7: AND/OR Coocept Tree for Booleaa Query
R AR L R UL S R P B S I AL IR B R S T A I I TR
PR AP e T W i L AP S _";“-‘_"Ax.ﬁ:'.'!;‘ Py ~.'-;"‘. o e My ot T _'.:_‘.'A‘."A\'_", PR N

7. FUTUREZ WORK

Much additional research and system develop-

t esre needed to wake RUBRIC usable. Ve are
rently providiog a better wuser interface and
ductiog wmore complete experiments. The inter-

e for end users will ioclude more focused
eractive explanation, acalysis of results for
sitivity to specific rules and veights, display
graphs such a«s Figure 6, and rule editing.
erimentation wvill consist of defining, im couo-
ction vith users, larger tule sets for s realis-
retrieval domain and then using these rules to
rieve documents from & realistic databdase.

Ocher areas of possible future work include
iog rule evaluation snd textual psttern matching
e efficient, poscibly through the use of beuris-
s to limit rule evalustion; exploring additiomal
s of representing and propsgating uncertainty in
h oumeric and symbolic representations; ablative
ting to messure hov useful each system festure

extending the text reference language to allow
cification of the syvtactic role that a word

ys in & sentence (e.g., “ship™ uvsed as 2 noun
sus as a2 verb); constructing a more general
saurus that has a netwvork structure rather than

bierarchical one like rules; and allowing

rieva]l from multiple remote databases.

8. POTENTIAL APPLICATIONS

Applicatiou syscems based on RUBRIC may be

ful for information routing and change detec-
1, in addition to information retrieval. For
»rmation retrieval RUBRIC could be exteanded to

t ou formatted documents such as wmessages or
liographic entries, to work as a front end to
iting datadbases and information retrieval sys-
i, and to segment larger documeants by subtopics.
lIC could be used to process messages in Teal-
1, filtering the importsut ones and routing them
he appropriaste recipieant (humsn or another pro-
1). With RUBRIC, snalyses of documents over
! could detect statistical changes at & concep-

level rather than just ia the use of indivi-

keyvords.

9. REFERENCES

{McCune et a1.-83] Brian P. McCune, Jeffrey S.
Dean, Richard M. Tong, and Daniel G. Shapiro,
RUBRIC: A System for Rule-Pased Informstion
Retrieval, Techaical Report 1018-1, Advanced
Information & Decision Systems, Mountain View,
Californis, February 198).

(Salton & McGill-83} Gerard Sslton and Michael
J. McGill, JIntvroduction o Modern lanformsation
Retrievel, McCrawv-Hill Book Company, Nev York,
New York, 1983,

[Schank & DeJong-79] R. C. Schank aod C.
DeJong, “Purposive Understanding®, Chapter 24,
in J. E. Hayes, D. Michie, and L. 1I. Mikulich,

editors, Machine Intelligence, Volume 9, 1979,
pages 459-478.

{Shortliffe-76] Edward Hance Shortliffe,
Computer-Based Medicsl Copeultatjone: HMYCIN,

Americsa Elsevier Publishing Company, Inc., New
York, New York, 1976.

[Toog et al1.-83A} Richard X. Tong, Daniel G.
Shapiro, Jeffrey S. Dean, and Brian P. McCune,
“A Comparison of Uncertasinty Calculi in an
Expert System for Information Retrieval", in
Alan Bundy, editor, Proceedinge of the Eighth
International Jojnt Conference on Artjficial
Intelligence, William Kaufmann, Inc., Los
Altos, California, Auguet 1983, Volume 1, pages
194-197.

{Toog et a1.-83B] Richard M. Tomg, Daniel G.
Shapiro, Brian P, McCune, and Jeffrey S. Dean,
“A Rule-Based Approach to Information

Retrieval: Some Results and Commeats",
Proceedings of the National Conference on

Artificial Intelligence, William Kau:sann,
Inc., Los Altos, California, August 1983, pages
411-415.

R T

[N

s

0

3T

. -

Pl MRS

B
-l"'{]

-
¥

e T

